博碩士論文 100521100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.15.239.17
姓名 陳建盈(Jian-Ying Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
(Implementations on fT-Doubler Topology for Millimeter-Wave Voltage Controlled Oscillator and Injection Locked Frequency Divider)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製
★ 應用於K / V 頻段低功耗混頻器之研製★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究
★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要包含兩主題,第一部份為使用fT-倍頻電路設計毫米波壓控振盪器,首先將對於壓控振盪器和相位雜訊生成做介紹與描述,最後實現兩個V頻段壓控振盪器。第二部份使用fT-倍頻電路設計注入鎖定除頻器,分別對於除頻器架構作簡介,最後實現一個K頻段注入鎖定除頻器。以上電路分別使用tsmcTM 0.18-μm CMOS和tsmcTM 90-nm CMOS製程實現設計。
第一部份設計二個毫米波壓控振盪器,同時以fT-倍頻電路架構作為設計核心,第一個振盪器為應用於V頻段之新型fT-倍頻架構壓控振盪器,使用tsmcTM 90 nm CMOS製程,量測結果顯示,操作電壓1.2 V下,功率消耗約為2.076 mW,操作頻率約為58.52 GHz,可調頻率範圍為58.52 到 59.62 GHz,相位雜訊在偏移1 MHz時為 -92.098 dBc/Hz,證實此新型fT-倍頻壓控振盪器電路架構具有低相位雜訊及低功率消耗之特性,最大輸出功率約為 -15.41 dBm,優化指數為 -184.27 dBc/Hz,晶片面積為0.417 mm^2。另外一個振盪器為V頻段之fT-倍頻架構使用振幅分佈式壓控振盪器,將討論尾電流源所貢獻的閃爍雜訊,及探討電晶體的偏壓方式,讓壓控振盪器的相位雜訊有最佳化的表現。使用tsmcTM 90 nm CMOS製程,量測結果為,於操作電壓為1.2 V下,功率消耗約為10.9 mW,操作頻率約為60.72 GHz,可調範圍為59.58 到 60.72 GHz,相位雜訊在偏移1 MHz時為 -90.46 dBc/Hz,最大輸出功率約為 -8.3 dBm,優化指數為 -175.75 dBc/Hz,晶片面積為0.626 mm^2。
第二部份為設計一個注入鎖定除頻器,同樣以fT-倍頻電路架構作為核心,設計應用於K頻段之新型fT-倍頻架構注入鎖定除頻器,使用tsmcTM 0.18 μm CMOS製程,實現低功耗之K頻段除二除頻器,在輸入功率於0 dBm 下,鎖定頻率範圍為20.5~22.9 GHz,達11.06 %的鎖定範圍,功率消耗為1.728 mW ,其優化指數為 6.4 %/mW^2,晶片面積為0.594 mm^2。
最後將於最後一章,討論以上三顆晶片優劣處,並設定自己對於未來的期許和努力方向。
摘要(英) The thesis studies two subjects. The first one is on millimeter-wave voltage controlled oscillator (VCO) design where two V-band VCOs are demonstrated. The second one is on injection locked frequency divider (ILFD) design where a K-band ILFD is demonstrated. The circuits were implemented in tsmcTM 90-nm CMOS and tsmcTM 0.18-μm CMOS technologies.
The first part of this thesis presents two millimeter-wave VCOs using the fT-doubler cell. The proposed novel V-band fT-doubler VCO is implemented in tsmcTM 90-nm CMOS technology, which performs low power dissipation and low phase noise. The oscillation frequency is 58.52 GHz with the tuning range of 1100 MHz under a supply voltage of 1.2 V. The power consumption is 2.076 mW. The measured phase noise is -92.098 dBc/Hz at 1-MHz offset frequency. The calculated figure of merit (FOM) is -184.27 dBc/Hz. The chip size is 0.417 mm^2. The second circuit is a V-band fT-doubler VCO adopting bias level shifting technique which solves the flicker noise contributed from current source. The DC bias voltage of transistors is discussed, and then the phase noise is optimized. This VCO circuit was implemented in tsmcTM 90-nm CMOS technology. The operating frequency is 60.72 GHz with the tuning range of 1140 MHz under a supply voltage of 1.2 V. The power consumption is 10.9 mW. The measured phase noise is -90.46 dBc/Hz at 1-MHz offset frequency. The calculated FOM is -175.75 dBc/Hz. The chip size is 0.626 mm^2.
The second part of this thesis developed ILFD design using the fT-doubler cell. A novel fT-doubler technique is applied to a K-band ILFD design, this technique provides a wide locking range under low power dissipation. This K-band ILFD is implemented in tsmcTM 0.18-μm CMOS process. The obtained locking range is 20.5 to 22.9 GHz (11.06 %) at 0-dBm input power and 1.2-V supply voltage. The power consumption is 1.728 mW. The FOM is 6.4 %/mW^2. The chip size is 0.594 mm^2.
Finally, a brief conclusion is given in Chapter 5.
關鍵字(中) ★ 壓控振盪器
★ 注入鎖定除頻器
★ fT倍頻電路
★ 毫米波
關鍵字(英) ★ voltage controlled oscillator
★ injection-locked frequency divider
★ fT-doubler
★ millimeter-wave
論文目次 摘要 vi
Abstract viii
誌謝 x
目錄 xi
圖目錄 xiii
表目錄 xvi
第一章 緒論 1
1-1研究動機 1
1-2研究成果 2
1-3章節簡介 2
第二章 壓控振盪器簡介 3
2-1振盪器基本架構 3
2-1-1環型振盪器 3
2-1-2 LC共振腔振盪器 4
2-2基本壓控振盪器的原理和分析 6
2-3相位雜訊導論 8
2-3-1 Lesson 相位雜訊模型[1] 10
2-3-2 Hajimiri 相位雜訊模型[5] 14
2-4壓控振盪器重要規格參數 21
第三章 使用fT-倍頻電路之V-頻段壓控振盪器之設計 23
3-1 fT-倍頻電路架構介紹 23
3-2應用於V頻段之新型fT-倍頻架構壓控振盪器 29
3-2-1簡介 29
3-2-2新型fT-倍頻架構壓控振盪器設計原理 30
3-2-3量測結果 33
3-2-4結果討論 37
3-3 應用於V頻段之fT-倍頻架構使用振幅分佈式壓控振盪器 38
3-3-1 簡介 38
3-3-2 fT-倍頻架構使用振幅分佈式壓控振盪器 42
3-3-3量測結果 43
3-3-4結果討論 47
第四章 使用fT-倍頻電路之K-頻段注入鎖定除頻器之設計 49
4-1除頻器電路簡介 49
4-2除頻器架構 49
4-2-1注入鎖定除頻器(ILFD) 50
4-2-2除頻器之重要參數 52
4-3 應用於K頻段之新型fT-倍頻架構注入鎖定除頻器 53
4-3-1 新型fT-倍頻架構注入鎖定除頻器設計原理 53
4-3-2 量測結果 54
4-3-3結果討論 61
第五章 結論 63
5-1 結論 63
5-2 未來期許與研究方向 64
參考文獻 65
參考文獻 [1] B. Leeson, "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE , vol.54, no.2, pp. 329- 330, Feb. 1966.
[2] L. Dai, R. Harjani, Design of High-Perfoemance CMOS Voltage-Controlled Oscillators, Kluwer Academic Publishers, 2003.
[3] B. Razavi, RF Microelectronics, Prentice Hall, Inc.1998.
[4] F. M. Gardner, "Charge-pump phase-locked loop, " IEEE Trans. Comm., vol.com-28, pp.1849-1858, Nov. 1980.
[5] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators, " IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, February 1998.
[6] L. S. Culter and C. L. Searle, "Some aspects of the theory and measurement of frequency fluctuations in frequency standards, " Proc. IEEE, vol. 54, pp.136-154, Feb. 1966.
[7] T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, "A 5 GHz transformer-coupled CMOS VCO using bias-level shifting technique, " IEEE Radio Frequency Integrated Circuits Symp., 2004, pp. 127-130.
[8] P. Andreani, A. Fard, "More on the 1/f2 phase noise performance of CMOS differential-pair lc-tank oscillators, " Solid-State Circuits, IEEE Journal of, vol. 41, no. 12, Dec. 2003.
[9] Y. Wachi, T. Nagasaku, H. Kondoh, "A 28 GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique, " IEEE International Solid-State Circuit Conference Dig. Tech., pp. 482-630, Feb. 2008.
[10] A. Hajimiri, and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE J. of Solid-State Circuits, vol. 34, no.5, pp. 717-724, May 1999.
[11] B. Razavi, "A study of phase noise in CMOS oscillators," Solid-State Circuits, IEEE Journal of , vol.31, no.3, pp.331-343, Mar 1996.
[12] D. Ham, and A. Hajimiri, "Concepts and methods in optimization of integrated LC VCOs," Solid-State Circuits, IEEE Journal of , vol.36, no.6, pp.896-909, Jun 2001.
[13] R. L. Bunch, and S. Raman, "Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs," Solid-State Circuits, IEEE Journal of , vol.38, no.8, pp. 1325- 1332, Aug. 2003.
[14] C.C Li, T.P. Wang, C.C. Kuo, M.C. Chuang, and H. Wang, "A 21 GHz complementary transformer coupled CMOS VCO," Microwave and Wireless Components Letters, IEEE , vol.18, no.4, pp.278-280, April 2008.
[15] M. Kraemer, D. Dragomirescu, and R. Plana, "A high efficiency differential 60 GHz VCO in a 65 nm CMOS technology for WSN applications," Microwave and Wireless Components Letters, IEEE , vol.21, no.6, pp.314-316, June 2011.
[16] S. L. Jang, C.J. Huang, C.W. Hsue, and C.W. Chang, "A 0.3 V cross-coupled VCO using dynamic threshold MOSFET," Microwave and Wireless Components Letters, IEEE , vol.20, no.3, pp.166-168, March 2010.
[17] S. L. Liu, K. H. Chen, T. Chang, and A. Chin, "A low-power K-band CMOS VCO with four-coil transformer feedback," Microwave and Wireless Components Letters, IEEE , vol.20, no.8, pp.459-461, Aug. 2010.
[18] J. P. Hong, and S. G. Lee, "Low phase noise Gm-boosted differential gate-to-source feedback Colpitts CMOS VCO," Solid-State Circuits, IEEE Journal of , vol.44, no.11, pp.3079-3091, Nov. 2009.
[19] T. Y. Lu, C. Y. Yu, W. Z. Chen, and C. Y. Wu, "Wide tunning range 60 GHz VCO and 40 GHz DCO using single variable inductor, " IEEE Trans. on Circuits and Systems 60-I(2): 257-267 (2013)
[20] C.A. M. Kraemer, D. Dragomirescu, and R. Plana, "A High Efficiency Differential 60 GHz VCO in a 65 nm CMOS Technology for WSN Applications," Microwave and Wireless Components Letters, IEEE , vol.21, no.6, pp.314-316, June 2011
[21] L. Li, P. Reynaert, and M.S.J. Steyaert, "A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques," Microwave Theory and Techniques, IEEE Transactions on , vol.59, no.2, pp.406-413, Feb. 2011
[22] S.W. Chai, J. Yang, B.H. Ku, and S. Hong, "Millimeter wave CMOS VCO with a high impedance LC tank," Radio Frequency Integrated Circuits Symposium, 2010 IEEE , pp.545-548, 23-25 May 2010
[23] P.L. You, K.L. Huang, and T.H. Huang, "56 GHz CMOS VCO integrated with a switchable non-uniform differential transmission-line inductor," Microwave Conference, 2009. EuMC 2009. European , pp.397-400, Sept. 29 2009-Oct. 1 2009
[24] S. Bozzola, D. Guermandi, A. Mazzanti, and F. Svelto, "An 11.5% frequency tuning, −184 dBc/Hz noise FOM 54 GHz VCO," Radio Frequency Integrated Circuits Symposium, Radio Frequency Integrated Circuits Symposium, 2008 IEEE , pp.657-660, June 17 2008-April 17 2008
[25] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, “VCO design for 60 GHz application using differential shield inductors in 0.13 μm CMOS,” Radio Frequency Integrated Circuits Symp., 2008 IEEE, pp. 135-138.
[26] L. Li, P. Reynaert, and M. S. J. Steyaert," Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank", IEEE J. Solid-State Circuits,Vol.44,No.7,July 2009.
[27] C. N. Kuo, and T. C. Yan, "A 60 GHz injection-locked frequency tripler with spur suppression," Microwave and Wireless Components Letters, IEEE , vol.20, no.10, pp.560-562, Oct. 2010.
[28] B. Razavi, "A study of injection locking and pulling in oscillators," Solid-State Circuits, IEE Journal of , vol.39, no.9, pp. 1415- 1424, Sept. 2004
[29] W .L. Chan, J.R. Long, and J.J. Pekarik, "A 56-to-65GHz injection-locked frequency tripler with quadrature outputs in 90 nm CMOS," Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International , pp.480-629, 3-7 Feb. 2008.
[30] H. Wu, and A. Harjimili, "A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement, " IEEE International Solid-StateCircuit Conference Dig. Tech., pp. 412-413, Feb. 2001.
[31] U. Singh and M. M. Green, "High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz, " IEEE J. Solid-State Circuits ,vol.40, no. 8,pp. 1658-1661,Aug. 2005.
[32] T. C. Lee and Y.C. Huang, "A Miller divider based clock generator for MBOA – UWB application, " in VLSI Circuits Symp. Tech. Dig., pp. 34-37, Jun. 2005.
[33] H. Wu and A. Hajimiri, "A 19 GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement, " in IEEE Int. Solid-State Circuit Conf., pp. 412-413,417, Feb. 2001.
[34] Y. T. Chen, M. W. Li, H. C. Kuo, T. H. Huang, and H. R. Chuang, "Low-voltage K -band divide-by-3 injection-locked frequency divider with floating-source differential injector, " IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 60–67, 2012.
[35] M. W. Li, P. C. Wang, T. H. Huang, and H. R. Chuang, "Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers, " IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 679-685, Mar. 2012.
[36] T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa, T. Kuroda, "20-GHz quadrature injection-locked LC dividers with enhanced locking range, " IEEE J. of Solid-State Circuits, vol.43. no. 3, pp. 610-618, March. 2008.
[37] C. C. Chen, C. K. C. Tzuang, "A sub-1V 22-GHz CMOS injection-locked frequency divider, " European Microwave Integrated Circuits Conference, 3rd,Oct. 2008, pp. 68-70.
[38] Y. H. Kuo, J. H. Tsai, and T. W. Huang, "A 1.5-mW, 23.6% frequency locking range,24-GHz injection-locked frequency divider," in Proc. European Microwave Conference Proceedings, Sept. 2010
[39] H. M. Hsu , C. H. Wang, and Y. D. Chou, "Double injection of a divide-by-2 LC frequency divider to enhance locking range, " IEEE Asia-Pacific Microwave Symposium, pp. 327 – 330, Dec., 2011.
[40] L. Li, P. Reynaert, and M.S.J. Steyaert, "A 60-GHz CMOS VCO using capacitance-splitting and gate–drain impedance-balancing techniques," Microwave Theory and Techniques, IEEE Transactions on , vol.59, no.2, pp.406-413, Feb. 2011.
[41] J. C. Chien, L. H. Lu, "Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture, " IEEE J. of Solid-State Circuits, vol. 42, no. 9, pp. 1942-1952, Sep. 2007.
[42] N. Zhang and K. K. O, "94 GHz voltage controlled oscillator with 5.8% tuning range in bulk CMOS, " IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 548-550, Aug. 2008.
[43] H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, and S. S Lu, "A 0.6 V, 4.32 mW, 68 GHz low phase-noise VCO with intrinsic-tuned technique in 0.13 μm CMOS, " IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 467-469, July 2008.
[44] 陳瑋強,"Ku/K 頻段壓控振盪器及注入鎖定除頻器暨毫米波f_T-倍頻電路壓控振盪器與寬頻混頻器之研製," 碩士論文, 國立中央大學, 2009.
[45] 簡偉仁,"應用於K頻段之低功耗低相位雜訊壓控振盪器暨Ku頻段雙模注入式除頻器之研製," 碩士論文, 國立中央大學, 2009.
[46] 李俊家,"Ku/K頻段壓控振盪器與Ku頻段注入鎖定式除頻器之研製," 碩士論文, 國立中央大學, 2010.
[47] 連子誼,"K/V頻段壓控振盪器暨V頻段三階次諧注入鎖定振盪器之研製,” 碩士論文, 國立中央大學, 2011.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2013-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明