博碩士論文 100521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.219.200.80
姓名 沈煒凱(Wei-kai Shen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高電流氮化鎵場效電晶體之直流與動態特性研究
(Study of Direct Current and Dynamic Characteristics on High Current GaN Field Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來環保意識抬頭,綠能產業已成為工業發展趨勢,利用氮化鎵功率元件應用在開關電路中將可大幅降低能源的損耗。本論文主要探討大電流氮化鎵電晶體之製作,及使用不同的閘極絕緣層材料對於單根指叉元件特性的影響。為了實現大電流電晶體元件,實驗中採用多根指叉的光罩設計,在元件總閘極寬度為20 mm、閘極偏壓為0 V、汲極偏壓10 V且pulse width為200 μs時,成功的達成8.3安培的電流特性,且正規化後的開啟電阻為3.6 mΩ-cm2。其動態電阻約為直流電阻的1.67倍。
本實驗亦設計與探討了多種閘極絕緣層材料,分別為二氧化矽、氮化矽和氧化鋁,以及二氧化矽/氧化鋁和氮化矽/氧化鋁的複合式絕緣層結構。發現使用氧化鋁和氮化矽為絕緣層的元件具有較低的開啟電阻為3.4 mΩ-cm2和3.1 mΩ-cm2。但在截止特性方面,惟具有二氧化矽為絕緣層材料的元件崩潰電壓能超過200 V,而其他種元件皆有提早崩潰的現象。此外,不同閘極絕緣層之元件在動態特性上也有不同的表現,藉由C-V量測後可以發現主要由於半-絕接面的深層缺陷能階密度不同所導致。
摘要(英) This thesis focuses on the fabrication of high current GaN transistors and the influence of different gate insulator materials on the single finger devices. In order to achieve high current transistors, this study designed the multi-finger type layout with the total gate width of 20 mm. High current AlGaN/GaN MISFETs grown on 6” Si substrate were successfully demonstrated. When the device is under gate bias of 0 V, drain bias of 10 V and pulse width of 200 μs, the maximum current and specific on-state resistance (Ron) reached 8.3 A and 3.6 mΩ-cm2, respectively. In addition, the measured dynamic Ron is about 1.67 times magnitude of the static Ron.
This study designed a variety of gate insulator materials, including Al2O3、SiO2、Si3N4 and SiO2/Al2O3 composite layer, and found out that the devices with Al2O3 and Si3N4 gate insulator had lower Ron of 3.4 mΩ-cm2 and 3.1 mΩ-cm2. In the off-state characteristics, the devices with SiO2 and SiO2/Al2O3 composite layer have higher breakdown voltage over 200 V, while the other two devices have the problem of early breakdown. In addition, devices with different insulators have different performances on the dynamic Ron. By C-V measurement, the density of deep level trap between insulator and semiconductor could be obtained to analyze the difference of dynamic characteristics.
關鍵字(中) ★ 氮化鎵
★ 場效電晶體
★ 閘極絕緣層
★ 動態電阻
關鍵字(英)
論文目次 論文摘要 IV
Abstract V
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2 氮化鎵材料特性 3
1.3 氮化鎵高功率元件發展現況 6
1.4 研究動機與論文架構 10
第二章 常開型多根指叉元件之製作和電性分析 11
2.1 多根指叉元件之光罩設計 11
2.2多根指叉元件製程流程 13
2.3 多根指叉元件之電流-電壓特性 20
2.3.1 元件結構及簡易電性量測 20
2.3.2 多根指叉元件之直流電性量測 23
2.4 本章總結 29
第三章 閘極絕緣層材料對MIS-FET之電性影響 30
3.1 實驗設計與製程流程 30
3.2不同閘極絕緣層材料之元件順向電流-電壓特性與分析 35
3.3不同閘極絕緣層材料之元件逆向電流-電壓特性與分析 41
3.4本章總結 46
第四章 動態特性分析 47
4.1 動態電阻原理介紹 47
4.2 多根指叉元件動態特性分析 48
4.3 閘極絕緣層對動態特性之影響 52
4.3.1不同閘極絕緣層之動態特性 52
4.3.2不同閘極絕緣層之電容-電壓特性分析 57
4.4 本章總結 61
第五章 結論 62
參考文獻 64
參考文獻 [1] Yoshitaka Taniyasu, and Makoto Kasu, "Improved Emission Efficiency of 210-nm Deep-ultraviolet Aluminum Nitride Light-emitting Diode," NTT Technical Review, 2010.
[2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, p. 334, 2000.
[3] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, "AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor," IEEE Electron Device Letters, vol. 21, pp. 63-65, 2000.
[4] Tohru Oka, and Tomohiro Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," IEEE Electron Device Letters, vol. 29, pp. 668-670, 2008.
[5] Ki-Sik Im, Jong-Bong Ha, Ki-Won Kim, Jong-Sub Lee, Dong-Seok Kim,
Sung-Ho Hahm, and Jung-Hee Lee, "Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate," IEEE Electron Device Letters, vol. 31, pp. 192-194, 2010.
[6] Mi-Kyung Kwon, Ki-Won Kim, Sung-Dal Jung, Dong-Seok Kim, Ki-Sik Im, Hee-Sung Kang, Chul-Ho Won, Ryun-Hwi Kim, Kyu-Il Jang and Jung-Hee Lee, "Effect of Al2O3 Gate Insulator Thickness on Characteristics of Normally-off GaN MOSFETs," Journal of Photonic Science and Technology, vol. 2, pp. 25-28, 2012.
[7] Junxia Shi, Lester F. Eastman, Xiaobin Xin, and Milan Pophristic, "High performance AlGaN/GaN power switch with HfO2 insulation," APPLIED PHYSICS LETTERS, vol. 95, p. 042103, 2009.
[8] Liang Pang, Yaguang Lian, Dong-Seok Kim, Jung-Hee Lee, and Kyekyoon Kim, "AlGaN/GaN MOSHEMT With High-Quality Gate–SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 59, pp. 2650-2655, 2012.
[9] Li-Hsien Huang, Shu-Hao Yeh, Ching-Ting Lee, Haipeng Tang, Jennifer Bardwell, and James B. Webb, "AlGaN/GaN Metal–Oxide–Semiconductor
High-Electron Mobility Transistors Using Oxide Insulator Grown by Photoelectrochemical Oxidation Method," IEEE Electron Device Letters, vol. 29, pp. 284-286, 2008.
[10] A.Fontserè, A.Pérez-Tomása, P.Godignona, and J.Millán, "High Voltage Low Ron In-situ SiN/Al0.35GaN0.65/GaN on-Si Power HEMTs Operation up to 300 C," Solid-State Device Research Conference, pp. 306-309, 2012.
[11] Taku Sato, Junich Okayasu, Masahiko Takikawa, and Toshi-kazu Suzuki, "AlGaN-GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors With Very High-k Oxynitride TaOxNy Gate Dielectric," IEEE Electron Device Letters, vol. 34, pp. 375-377, 2013
[12] Xinwei Wang, Omair I. Saadat, Bin Xi, Xiabing Lou, Richard J. Molnar, Tomas Palacios, and Roy G. Gordon, "Atomic layer deposition of Sc2O3 for passivating AlGaN/GaN high electron mobility transistor devices," APPLIED
PHYSICS LETTERS, vol. 101, p. 232109, 2012.
[13] A.Fontserèa, A.Pérez-Tomása, V. Banua, P.Godignona, and J.Millán, "A HfO2 based 800V/300oC Au-free AlGaN/GaN-on-Si HEMT Technology," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 37-40, 2012.
[14] Marleen Van Hove, Sanae Boulay, Sandeep R. Bahl, Steve Stoffels, Xuanwu Kang, Dirk Wellekens, Karen Geens, Annelies Delabie, and Stefaan Decoutere, "CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon," IEEE Electron Device Letters, vol. 33, pp. 667-669, 2012.
[15] B. De Jaeger, M. Van Hove, D. Wellekens, X. Kang, H. Liang, G. Mannaert, K. Geens, and S. Decoutere, "Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 49-52, 2012.
[16] Oliver Hilt, Eldad Bahat-Treidel, Eunjung Cho, Sebastian Singwald and Joachim Würfl, "Impact of Buffer Composition on the Dynamic On-State Resistance of High-Voltage AlGaN/GaN HFETs," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 345-348, 2012.
[17] Donghyun Jin and Jesús A. del Alamo, "Mechanisms responsible for
dynamic ON-resistance in GaN high-voltage HEMTs," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 333-336, 2012.
[18] K.S. Boutros, S. Burnham, D. Wong, K. Shinohara, B. Hughes, D. Zehnder, and C. McGuire, "Normally-off 5A/1100V GaN-on-Silicon Device for High Voltage Applications," International Electron Devices Meeting(IEDM), pp. 161-16., 2009.
[19] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, "High Breakdown Voltage Achieved on AlGaN/GaN .HEMTs With Integrated Slant Field Plates," IEEE Electron Device Letters, vol. 27, pp. 713-715, 2006.
[20] Silvia Lenci, Xuanwu Kang, Dirk Welleken et al., "Au-free, High-Breakdown AlGaN/GaN MISHEMTs with Low Leakage, High Yield
and Robust TDDB Characteristics," CS MANTECH Conference, 2012.
[21] Injun Hwang, Hyoji Choi, JaeWon Lee et al., "1.6kV, 2.9 mΩ cm2 Normally-off p-GaN HEMT Device," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 41-44, 2012.
[22] Takashi Mizutani, Yutaka Ohno, M. Akita, Shigeru Kishimoto, and
Koichi Maezawa, "A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 50, pp. 2015-2020, 2003.
[23] Wataru Saito, Tomohiro Nitta, and Yorito Kakiuchi et al., "Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, pp. 1825-1830.
[24] David Deen, David Storm, David Meyer et al., "AlN/GaN HEMT with high-k ALD HfO2 or Ta2O5 gate insulation," Phys. Status Solidi C 8, No. 7-8, 2420-2423, 2011.
[25] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," IEEE Electron Device Letters, vol. 34, pp. 193-195, 2013.
指導教授 綦振瀛 審核日期 2013-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明