參考文獻 |
[1] Lon E. Bell, et al., “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science, 321, 1457, 2008.
[2] D. M. Rowe, et al., “CRC handbook of thermoelectrics,” edited by D. M. Rowe, CRC Press, Boca Raton, 1995.
[3] A. Shakouri, “Recent developments in semiconductor thermoelectric physics and materials,” Annu. Rev. Mater. Res., 41, 399-431, 2011.
[4] M. Asheghi, et al., “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys., 91, 5079-5088, 2002.
[5] I. Terasaki, et al., “Materials for energy conversion devices,” edited by C. C. Sorrell, et al., CRC Press, 2005.
[6] A. F. Ioffe, “Semiconductor thermoelements and thermoelectric cooling,” Infosearch, London, 1957.
[7] H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys., 5, 386-390, 1954.
[8] G. A. Slack, et al., “CRC handbook of thermoelectrics,” edited by D. M. Rowe, CRC Press, Boca Raton, 1995.
[9] M. S. Dresselhaus, et al., “Low-dimensional thermoelectric materials,” Phys. Solid State, 41, 679-682, 1999.
[10] M. S. Dresselhaus, et al., “New directions for low-dimensional thermoelectric materials,” Adv. Mater., 19, 1043-1053, 2007.
[11] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, 47, 16631-16634 , 1993.
[12] C. J. Vineis, et al., “Nanostructured thermoelectrics: big efficiency gains from small features,” Adv. Mater., 22, 3970-3980, 2010.
[13] R. Venkatasubramanian, et al., “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, 413, 597-602, 2001.
[14] T. C. Harman, et al., “Quantum dot superlattice thermoelectric materials and devices,” Science, 297, 2229-2232, 2002.
[15] A. I. Hochbaum, et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, 451, 163-167, 2008.
[16] X. W. Wang, et al., “Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy,” Appl. Phys. Lett., 93, 193121, 2008.
[17] G. Joshi, et al., “Enhanced thermoelectric figure of merit in nanostructured p-type silicon germanium bulk alloy,” Nano Lett., 8, 4670-4674, 2008.
[18] C. B. Vining, et al., “CRC handbook of thermoelectrics,” edited by D. M. Rowe, CRC Press, Boca Raton, 1995.
[19] J. A. Martinez, et al., “Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering,” J. Appl. Phys., 110, 074317, 2011.
[20] E. K. Lee, et al., “Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties,” Nano Lett., 12, 2918-2923, 2012.
[21] P. D. Maycock, “Thermal conductivity of silicon, germanium, III-V compounds and III-V alloys,” Solid-State Electronics, 10, 161-168, 1967.
[22] J. E. Chang, et al., “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” J. Phys. D: Appl. Phys., 45, 105303, 2012.
[23] 張榮恩,「低熱傳導率之多重鍺量子點陣列薄膜製程與量測分析」,國立中央大學,碩士論文,2011。
[24] T. Akashi, et al., “High temperature transport property of B- and P-doped GeSi single crystals prepared by a Czochralski method,” Mater. Trans., 42, 1024-1027, 2001.
[25] C. Kittel, “Introduction to solid state physics,” 7th edition, John Wiley & Sons, New York, 1996.
[26] J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev., 113, 1046-1051, 1959.
[27] M. G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev., 132, 2461-2471, 1963.
[28] C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev., 134, A1058-A1069, 1964.
[29] S. M. Sze, “Semiconductor devices physics and technology,” 2nd edition, John Wiley & Sons, New York, 2001.
[30] S. M. Lee and D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys., 81, 2590-2595, 1997.
[31] 張宇瑞,「鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製」,國立中央大學,碩士論文,2011。
[32] M. Cao, et al., “Low pressure chemical vapor deposition of Si1-xGex films on SiO2: characterization and modeling,” J. Electrochem. Soc., 142, 1566-1572, 1995.
[33] R. M. Costescu, et al., “Thermal conductivity and sound velocities of hydrogen-silsesquioxane low-k dielectrics,” Phys. Rev. B, 65, 094205, 2002.
[34] C. Hu, et al., “Thermal conductivity study of porous low-k dielectric materials,” Appl. Phys. Lett., 77, 145, 2000.
[35] J. He, et al., “On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials,” J. Am. Chem. Soc., 132, 8669-8675, 2010.
[36] S. Uma, et al., “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” Int. J. Thermophys., 22, 605-616, 2001.
[37] M. M. Mandurah, et al., “Dopant segregation in polycrystalline silicon,” J. Appl. Phys., 51, 5755-5763, 1980. |