博碩士論文 995201018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.118.184.211
姓名 李孟傑(Meng-Jie Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具反向壓電極化電場之氮化銦鎵/氮化鎵量子井發光二極體
(InGaN/GaN quantum-well light-emitting diodes with a reversed piezoelectric polarization field)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 改善氮化銦鎵/氮化鎵多重量子井發光二極體效率衰退效應與降低操作電壓已經成為近年來熱門研究的議題。由於壓電極化場之不匹配造成極化片電荷存在於氮化銦鎵/氮化鎵之界面進而影響電子的傳輸,此現象在發光二極體之效率衰退效應中扮演著重要的因素。在一般利用化學氣相沉積沿著[0001]方向所成長之傳統鎵面(或稱作一般極化方向)的氮化銦鎵多重量子井發光二極體結構中,極化效應在最後一個氮化鎵位能障所產生的電場會加速電子傳輸而使得大量的電子溢流至氮化鋁鎵電子阻擋層。同時,壓電極化場的不匹配也使得氮化鎵與氮化鋁鎵電子阻擋層界面的價電帶之間產生釘狀的位能障,使之減少了由P型氮化鎵區注入主動區的電洞濃度而降低了在量子井的載子輻射複合效率。在這個研究中,吾人利用SiLENSe模擬軟體研究了氮面(或稱作反向極化方向)單一量子井發光二極體的光電特性。與傳統的鎵面發光二極體結構相比,氮面發光二極體有更高的內部量子效率且有較低的操作電壓,並可藉由降低溢流電流來改善效率衰退的效應,而這些特性都藉由了在氮化銦鎵量子井中的反向壓電極化電場而呈現出來。
除此之外,此研究也藉由加入一層氮化鋁鎵電子阻擋層至發光二極體中使之在氮化鎵與氮化鋁鎵的介面產生了二維電洞氣來成功地降低了元件操作電壓。由模擬結果顯示,與未使用氮化鋁鎵的電子阻擋層相比,當吾人使用12% 鋁含量的氮化鋁鎵電子阻擋層時,其操作電壓可由2.93伏特降至2.74伏特。另外一方面,吾人也針對量子井的周期數對氮面發光二極體的影響作討論,其結果顯示氮面的發光二極體與傳統鎵面的發光二極體相比在大電流密度下有著較大的串聯電阻,這是因為在量子井氮化銦鎵與氮化鎵介面的反向極化電場所產生的位能障會阻擋電子與電洞在能帶中的傳輸,故使得量子井周期數越多則串聯阻值也會隨之越大。
然而,為了達到氮面發光二極體的物理特性,本實驗利用化學氣相沉積系統的再成長方式開發了具有反向壓電極化電場特性的P型氮化鎵於下方的發光二極體。首先,為了保護P型氮化鎵的歐姆接觸區域,吾人沉積厚度50奈米的二氧化矽於P型氮化鎵的表面,接著再使用黃光微影製程去定義反轉的發光二極體結構之再成長區域於P型氮化鎵表面,其成長結構與順序分別為700奈米的P型氮化鎵,五個週期的氮化銦鎵與氮化鎵多重量子井結構和600奈米的N型氮化鎵。實驗結果顯示,與傳統P型氮化鎵於上方的發光二極體結構相比,在73電流密度下,此實驗成功的將輸出功率從2.35 毫瓦改善至2.64毫瓦並且沒有效率衰退的現象。這個研究顯示了P型氮化鎵於下方的發光二極體在未來仍具有很大的發展淺力且值得更進一步的去開發與探討。
摘要(英) Reducing the efficiency droop and turn on voltage of InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) have been the subjects under intensive investigations lately. Piezoelectric polarization mismatch, which induces polarization sheet charge at InGaN/GaN interfaces and impacts electron transport, is considered an important factor in the efficiency roll-off behavior of these LEDs. For typical Ga-face InGaN MQW LEDs grown along the [0001] orientation by metal-organic chemical vapor deposition, also referred as “normal polarization,” the polarization-induced electric field in the last barrier layer is responsible for the enhanced electron spillover toward the electron blocking layer (EBL). Meanwhile, the piezoelectric polarization mismatch between the EBL and GaN creates a potential spike in the valence band that blocks the injection of holes from p-GaN to MQW and reduces radiative recombination in MQW. In this work, the optical and electrical characteristics of N-face single quantum well LEDs are investigated by SiLENSe simulation software, also referred to as “reversed polarization”. Compared to its Ga-face counterparts, N-face LEDs exhibit higher internal quantum efficiency and lower turn-on voltage as well as less droop effect due to the reduced electron spillover. These properties can be well accounted for by the reversed piezoelectric field in the InGaN quantum well.
Besides, the operating voltage of these LEDs is reduced when an AlGaN electron blocking layer (EBL) is added to the LED structure. This is attributed to the formation of a 2-dimensional hole gas at the GaN/AlGaN interface. Simulation shows that the use of an Al0.12Ga0.88N EBL results in an operating voltage of 2.74 V, compared to 2.93 V for the LED without an EBL. Otherwise, the varied quantum well periods of N-face LEDs were also discussed, the series resistance increasing much higher than Ga-face LEDs at high current density, it is attributed to the reversed polarization field to induce the higher potential than conventional Ga-face LEDs at InGaN/GaN interface that impedes electrons and holes to transportation in the MQW when we increasing the quantum periods.
However, in order to achieve the same physical property of N-face LEDs, the p-side down LEDs with a reversed polarization field is developed by regrowth method using metal-organic chemical vapor deposition (MOCVD). The experiment firstly deposited 50 nm thick SiO2 on p-type GaN surface to protect the p-type GaN contact region. The LED structure regrowth region is then defined by photolithography following an inversed LED structure growth, whish’s sequence is a 700 nm p-type GaN, five period InGaN/GaN MQWs and a 600 nm n-type GaN layer. As a result, comparing with p-side up LED structure, the output power is successful improved from 2.35 mW to 2.64 mW under 73 A/cm2 and show the no droop effect. This work indicates that the p-side down devices are very promising and deserve further development in the future.
關鍵字(中) ★ 氮面發光二極體
★ 反向壓電極化電場
★ P型氮化鎵於下方的發光二極體
★ 氮化銦鎵/氮化鎵發光二極體
關鍵字(英) ★ N-face LEDs
★ Reversed piezoelectric polarization field
★ P-side-down LEDs
★ InGaN/GaN light-emitting-diodes
論文目次 中文論文摘要 i
Abstract iii
誌謝 v
Contents vii
Figure Captions ix
Table Captions xiii
Chapter 1 Introduction
1.1 General Background Information 01
1.2 Literature Review 05
1.3 Motivation 10
1.4 Brief Introduction of this Dissertation 13
Reference 14
Chapter 2 Simulation conception and framework
2.1 Introduction 17
2.2 Physical model and parameter set-up 19
2.2.1 Band Structure build up 19
2.2.2 Carrier distribution model build up 28
2.2.3 Carrier transport mechanism in LED Heterostructure 32
2.2.4 Non-equilibrium Carrier Recombination Model 35
Reference 41
Chapter 3 Simulation of N-face InGaN/GaN quantum-well light-emitting-diodes
3.1 Introduction 46
3.2 N-face single quantum well LEDs 47
3.3 Effect of insert an AlGaN EBL to N-face SQW LEDs 52
3.4 QW periods modulation analysis in N-face LEDs 59
Chapter 4 P-side-down light-emitting-diodes design and analysis
4.1 Introduction 68
4.2 P-side-down LEDs device design and process flow 70
4.3 Electrical properties of p-side-down LEDs 76
4.3.1 Sheet resistance measurement and characteristic analysis 76
4.3.2 Current crowding issue and device I-V characteristic analysis 81
4.4 Optical properties of p-side-down LEDs 86
4.4.1 Luminescence intensity and distribution characteristic analysis 86
4.4.2 External quantum efficiency and output power analysis 88
Reference 91
Chapter 5 Conclusion 92
參考文獻 [1] C.E. Lee, H.C. Kuo, Y.C. Lee, M.R. Tsai, T.C. Lu, S.C. Wang, C.T. Kuo, IEEE Photonics Technol. Lett. 20, 184 (2008)
[2] C.F. Shen, S.J. Chang, W.S. Chen, T.K. Ko, C.T. Kuo, S.C. Shei, IEEE Photonics Technol. Lett. 19, 780 (2007)
[3] Y.K. Su, S.J. Chang, S.C. Wei, R.W. Chuang, S.M. Chen, W.L. Li, IEEE Electron Device Lett. 26, 891 (2005)
[4] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, S.F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007)
[5] J.P. Liu, J.B. Limb, J.-H. Ryou, D. Yoo, C.A. Horne, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, A.D. Hanser, L. Liu, E.A.Preble, K.R. Evans, Appl. Phys. Lett. 92, 011123 (2008)
[6] Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert, Appl. Phys. Lett. 91, 183507 2007
[7] Huiyong Liu , Xing Li , Xianfeng Ni, and Hadis Morkoc, IEEE Vol. 98, No. 7, July 2010
[8] N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007)
[9] Markus Maier, Klaus Köhler, Michael Kunzer, Wilfried Pletschen, and Joachim Wagner, Appl. Phys. Lett. 94, 041103 (2009)
[10] E. Fred Schubert, “Light-Emitting-Diodes, Second Edition” (2006)
[11] Jiuru Xu, Martin F. Schubert, Ahmed N. Noemaun, Di Zhu, Jong Kyu Kim, E. Fred Schubert, Min Ho Kim, Hun Jae Chung, Sukho Yoon, Cheolsoo Sone, and Yongjo Park, Appl. Phys. Lett. 94, 011113 (2009)
[12] Martin F. Schubert, Jiuru Xu, Jong Kyu Kim, E. Fred Schubert, Min Ho Kim, Sukho Yoon, Soo Min Lee, Cheolsoo Sone, Tan Sakong, and Yongjo Park, Appl. Phys. Lett. 93, 041102 (2008)
[13] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A.Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 87, 231110 (2005)
[14] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, Appl. Phys. Lett. 85, 5143 (2004)
[15] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, J. Appl. Phys. 100, 023522 (2006)
[16] Zhiqiang Liu, Jun Ma, Xiaoyan Yi, Enqing Guo, Liancheng Wang, Junxi Wang, Na Lu, Jinmin Li, Ian Ferguson, and Andrew Melton, Appl. Phys. Lett. 101, 261106 (2012)
[17] G. M. Wu and S. H. Chen, Journal of the Korean Physical Society, Vol. 52, No. 5, May 2008, pp. 1570~1574
[18] Xianfeng Ni, Qian Fan, Ryoko Shimada, Ümit Özgür, and Hadis Morkoç, Appl. Phys. Lett. 93, 171113 (2008)
[19] C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, Appl. Phys. Lett. 97, 261103 (2010)
[20] M. -H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. Fred Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007)
[21] X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü . Ö zgür, H. Morkoç, and A. Matulionis, J. Appl. Phys. 108, 033112 (2010)
[22] D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, Appl. Phys. Lett. 96, 121110 (2010)
[23] M. L. Reed, E. D. Readinger, H. Shen, M. Wraback, A. Syrkin, A. Usikov, O. V. Kovalenkov, and V. A. Dmitriev, Appl. Phys. Lett. 93, 133505 (2008)
[24] Martin F. Schubert, Appl. Phys. Lett. 96, 031102 (2010)
[25] Chia-Ming Lee, Chang-Cheng Chuo, I-Ling Chen, Jui-Cheng Chang, and Jen-Inn Chyi, IEEE Electron Device Lett., vol. 24, No. 3, Mar. 2003
[26] Hadis Morkoç, Handbook of Nitride Semiconductors and Devices (2008)
[27] E. C. McCagg and D. F. Dansereau, “A convergent paradigm for examining knowledge mapping as a learning strategy,” J. Educ. Res., vol. 84, no. 6, pp. 317-324, 1991.
[28] I. Akasaki and H. Amano, “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters,” Jpn.J.Appl.Phys. 36, Pt.1 (1997) 5393.
[29] O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D 31 (1998) 2653.
[30] M. Leszcynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski and T.D. Moustakas, “Thermal expansion of gallium nitride,” J.Appl.Phys. 76 (1994) 4909.
[31] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J.Appl.Phys. 94 (2003) 3675.
[32] I. Vurgaftman and J. R. Meyer, “Band parameters for III–V compound semiconductors and their alloys,” J.Appl.Phys. 89 (2001) 5815.
[33] Takashi Matsuoka, Hiroshi Okamoto, Masashi Nakao, Hiroshi Harima, and Eiji Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002).
[34] J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,” IEE Proc.-Optoelectron., Vol. 149, No. 4, August 2002.
[35] Shun Lien Chuang, “Optical Gain of Strained Wurtzite GaN Quantum-Well Lasers,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 32, NO. 10, OCTOBER 1996.
[36] S. L. Chuang and C. S. Chang, “k∙p method for strained wurtzite semiconductors,” PHYSICAL REVIEW B, VOLUME 54, 1996
[37] Hadis Morkoç, Handbook of Nitride Semiconductors and Devices (2008)
[38] A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys. 100, 023522 (2006).
[39] J.F.Nye, “Physical Properties of crystals. The representation by tensors and matrices,” Oxford at the Clarendon Press (1964).
[40] www.iiiv.cornell.edu/
[41] M. S. Shur, R. F. Davis, GaN – Based Materials and Devices (2004)
[42]Sadao Adachi,Properties of Group-IV, III-V and II-VI Semiconductors (2005)
[43] Kris T. Delaney, Patrick Rinke, and Chris G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94, 191109 (2009)
[44] J. Wu and W. Walukiewicz, “Band gaps of InN and group III nitride alloys”,
Superlattices and Microstructures 34, 63 (2003).
[45] V.Yu. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E.E. Haller, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap” Phys. Status Solidi B 230, R4 (2002).
[46] I. Gorczyca, T. Suski, N. E. Christensen and A. Svane, “Size effects in band gap bowing in nitride semiconducting alloys,” PHYSICAL REVIEW B 83, 153301 (2011).
[47] Poul Georg Moses, Maosheng Miao, Qimin Yan, and Chris G. Van de Walle, “Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN,” J. Chem. Phys. 134, 084703 (2011).
[48] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valenceband discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by xray photoemission spectroscopy,” Appl. Phys. Lett. 68, 2541 (1996).
[49] D.J. Dugdale, S. Brandt, and R.A. Abram, “Direct calculations of k•p parameters
for wurtzite AlN, GaN, and InN”, Phys.Rev. B 61 (2000) 12933.
[50] Yen-Kuang Kuo, Miao-Chan Tsai, Sheng-Horng Yen, Ta-Cheng Hsu, and Yu-Jiun Shen,”Effect of P-Type Last Barrier on Efficiency Droop of Blue InGaN Light-Emitting Diodes,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 8, AUGUST 2010.
[51] Chengxin WANG, Narihiko MAEDA, Kotaro TSUBAKI, Naoki KOBAYASHI and Toshiki MAKIMOTO, “Electron Transport Properties in Lightly Si-doped InGaN Films Grown by Metalorganic Vapor Phase Epitaxy,” Jpn.J.Appl.Phys. Vol. 43, No. 6A, 2004, pp. 3356–3359.
[52] B. N. Pantha, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of p-type InGaN,” Appl. Phys. Lett. 95, 261904 (2009).
[53] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, In-Hwan Lee, Jin-Woo Ju, and S. J. Pearton, ” Comparison of electrical properties and deep traps in p-Al x Ga 1−x N grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 073706 (2009).
[54] M. Pophristic, S. P. Guo, and B. Peres,” High-conductivity n-AlGaN with high Al mole fraction grown by metalorganic vapor phase deposition,” Appl. Phys. Lett. 82, 4289 (2003).
[55] S.Yu.Karpov and Yu.N.Makarov, “Dislocation Effect on Light Emission Efficiency in Gallium Nitride”, Appl.Phys.Lett. 81, 4721 (2002).
[56] W. Shockley and W.T. Read, Jr., “Statistics of the Recombinations of Holes and Electrons”, Phys.Rev. 87, 835 (1952).
[57] M.A. Jacobson, D.K. Nelson, O.V. Konstantinov, and A.V. Matveentsev, “The tail of localized states at the forbidden band of quantum well in GaN and its effect on the photoluminescence spectrum at the laser excitation”, Semiconductors 39, 1410 (2005).
[58] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert et al., “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”, Appl. Phys. Lett. 94, 111109 (2009).
[59] J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes”, Appl. Phys. Lett. 99, 181127 (2011).
[60] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys. 90, 4191 (2001).
[61] Hyunsoo Kim, Ji-Myon Lee, Chul Huh, Sang-Woo Kim, Dong-Joon Kim et al., “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett. 77, 1903 (2000).
[62] Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, and Nae-Man Park, “Lateral current transport path, a model for GaN-based light-emitting diodes:
Applications to practical device designs”, Appl. Phys. Lett. 81, 1326 (2002).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明