博碩士論文 100521082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.119.133.206
姓名 王冠堯(Kuan-Yao Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 開發生物阻抗量測系統搭配網印指叉電極採用電化學阻抗頻譜法偵測人類白蛋白與細胞行為
(Development of bio-impedance measurement system to detect human serum albumin and cell behavior using screen-printed interdigitated electrodes by electrochemical impedance spectroscopy)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 交流阻抗法為一非侵入式檢測技術,其可藉由細胞、組織與器官的電特性及其變化規律提取生理、病理狀況相關的生物醫學信號。本研究利用電極的尺寸維度接近小鼠巨噬細胞發炎後的大小,並藉由交流阻抗法即時監測小鼠巨噬細胞發炎的情形,搭配掃描式電子顯微鏡來觀測小鼠巨噬細胞於電極上發炎的狀況,並探討所量出之阻抗值與細胞發炎之間的關係。本研究也探討細胞貼附於電極時對於低頻阻抗值所造成之影響,在此我們檢測蛋白質濃度,以探討蛋白質濃度與低頻阻抗值之間的關係。小鼠細胞發炎的實驗中,其當細胞發炎之實驗組會導致中頻阻抗值變化上升210%,而細胞沒有發炎之控制組之中頻阻抗變化僅上升80%,成功利用交流阻抗法去監測細胞發炎的情形。在量測細胞低頻的阻抗實驗中,其低頻的阻抗值與細胞外基質濃度具有其線性關係,低頻組抗值分析出細胞貼附,而中頻阻抗值分析細胞行為,結合其兩種分析可以得知完整的細胞行為。除此之外,本研究也開發自製阻抗量測系統,其利用微控制器(AT89S51)和積體電路(AD5933)以達到便宜、使用方便、容易攜帶及高靈敏度的阻抗量測,並量測人類白蛋白進行測試,利用所開發的阻抗量測系統量測之阻抗值與精密阻抗量測儀器Im6/6ex相近,其差異僅6%以下。
摘要(英) Bio-impedance technology extracts both physiological and pathological information from the human body through the use of biological cells, tissues, and organs. This form of testing is a non-destructive technique, which is widely in use. In our study, we used screen-printed interdigitated electrodes to detect inflammation of RAW264.7 cells in real time. We use the scanning electron microscope (SEM) to observe the cell morphology on the electrode. The relationship between impedance changed and inflammation was observed. This study also research the effect of the cells attached to the electrode at low frequencies. We will do protein quantitative analysis which will observe the relationship with impedance. In inflammation of RAW264.7 experiment for 24 hour, the inflammation groups increased normal impedance changed to 210%, while the control groups just increased normal impedance changed to 80%. In study on electrical properties of electrode surfacing with culture L929 at low frequency experiment, the results show the relationship between concentration of protein and impedance at low frequency. This study also development the impedance measurement system. The system we designed consists of two components. The first component is an AT89S51 microcontroller. The second is the integrated circuit AD5933, a bio-impedance measuring device manufactured by Analog Devices. Working together, the AT89S51 and AD5933 combine to produce a portable bio-impedance detection system. In human serum albumin experiment, the impedance measured by homemade impedance detection systsm and Im6/6ex are similar. The difference between homemade detection system and Im6/6ex are 6% or less.
關鍵字(中) ★ 生物感測電極
★ 人類白蛋白
★ 細胞發炎
關鍵字(英) ★ Bioelectrode
★ Inflammation
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-1-1 生物感測器定義 1
1-1-2 生物感測器組成與結構 1
1-1-3 電化學生物感測器量測方法 2
1-1-4 電極應用於生物感測器 21
1-2 生物臨床檢測 25
1-2-1蛋白尿檢測 25
1-2-2 細胞檢測 27
第二章 研究動機與目標 70
2-1 研究動機 70
2-2 研究目標 70
第三章 實驗方法 72
3-1 細胞培養 72
3-1-1 細胞培養藥劑、材料及使用設備 72
3-1-2 細胞培養方法及步驟 79
3-1-3 細胞SEM處理 82
3-2 細胞阻抗量測驗 84
3-2-1 小鼠巨噬細胞(RAW264.7)阻抗量測實驗 84
3-2-2 L929細胞於低頻阻抗量測與蛋白質檢測濃度 88
3-3 阻抗感測系統設計 94
3-3-1阻抗感測系統設計原理 94
3-3-2 AD5933內部架構 95
3-3-3 AT89S52 微控制器軟體設計 100
3-3-4 LabVIEW人機介面介紹 108
3-3-5 整體電路實現 112
3-4 人類白蛋白阻抗量測 114
3-4-1 人類白蛋白於不同背景溶液下阻抗量測實驗 114
3-4-2 臨床尿液人類白蛋白阻抗量測實驗 115
第四章 實驗結果 117
4-1小鼠巨噬細胞(RAW264.7)阻抗量測 117
4-2 L929細胞於低頻阻抗量測與蛋白質檢測濃度 135
4-3 阻抗量測系統測試及改良 137
4-3-1 阻抗量測系統之測試結果 137
4-3-2 阻抗量測系統之改良 140
4-3-3 人類白蛋白阻抗量測實驗結果 148
第五章 結論 156
Reference 157
參考文獻 [1] Drive, L., Basics of Electrochemical Impedance Spectroscopy. Application Note, 9/3/2010.
[2] Stephen M. Radke, S.M., IEEE, and Evangelyn C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE SENSORS JOURNAL, AUGUST 2004. 4: p. 434-440.
[3] Wang, L., et al., Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosens Bioelectron, 2008. 24(1): p. 14-21.
[4] 吳浩青,李永舫,電化學動力學,科技圖書出版社,2001
[5] M. S. Webster, I.V.T., S. J. MacGregor and M. Mattey, Computer Aided Modelling of an Interdigitated Microelectrode Array Impedance. IEEE Transactions on Dielectrics and Electrical Insulation, 2009. 16: p. 1356-1369.
[6] Huang, X.G., D.W. ; Nguyen, D.D. ; Domach, M.M. , Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior. Sensors, 2003. Proceedings of IEEE 2003. 1: p. 304 - 309.
[7] Yin, H., et al., Bioelectrical Impedance Assay to Monitor Changes in Aspirin‐Treated Human Colon Cancer HT‐29 Cell Shape during Apoptosis. Analytical Letters, 2007. 40(1): p. 85-94.
[8] Radke, S.M. and E.C. Alocilja, A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron, 2005. 20(8): p. 1662-7.
[9] Douglas, E , R. C Atkins. "The detection and measurement of microalbuminria: a challenge for clinical chemistry." Medical Laboratory Observer; Feb 2005; 37,2; ProQuest Medical Library; U.S.A.
[10] The Taiwan Society of Nephrology, 慢性腎臟疾病, Bureau of Health Promotion, Department of Health, R.O.C. (Taiwan), 2010
[11] Dockal, M., The Three Recombinant Domains of Human Serum Albumin. STRUCTURAL CHARACTERIZATION AND LIGAND BINDING PROPERTIES. Journal of Biological Chemistry, 1999. 274(41): p. 29303-29310.
[12] Ivorra, A., Bioimpedance monitoring for physiciansan overview. Biomedical Applications Group, CNM Barcelona, 2002: p. 131-178.
[13] Jacques Padawer, Ph.D. Professor Albert Einstein Coll Med Bronx, NY, USA
[14] Opossum58 from de.wikipedia.org
[15] 國立交通大學生物資訊研究所,台聯命科課程改進計畫教料
[16] H.D.HUANG, BIDLAB, National Chiao Tung University, 2005
[17] Akassoglou, K., et al., Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6698-703.
[18] Yingying Le, Y.Z., Pablo Iribarren and Ji Ming Wang, Chemokines and chemokine receptors : their manifold roles in homeostasis and disease. Cell Mol Immunol, 2004. 1: p. 95-104.
[19] Miller, SB. Prostaglandins in Health and Disease: An Overview. Seminars in Arthritis and Rheumatism. 2006, 36 (1): 37–49
[20] Prerna C. Patel, K.H.F., Eric C. C. Yang , Charlotte M. Deane and Rene E. Harrison, Proteomic Analysis of Microtubule-associated Proteins during Macrophage Activation. Molecular & Cellular 2009 8: p. 2500-2514.
[21] Gary E. Kaiser All Rights Reserved,January 30, 2001
[22] Cho, S. and H. Thielecke, Electrical characterization of human mesenchymal stem cell growth on microelectrode. Microelectronic Engineering, 2008. 85(5-6): p. 1272-1274.
[23] Bioimpedance & Bioelectricity Basics
[24] DD Nguyen, M.D., X Huang, Impedance Array Studies of Mammalian Cell Growth. Proceedings of IEEE, 2003.
[25] Chen, Y., et al., Real-time monitoring approach: assessment of effects of antibodies on the adhesion of NCI-H460 cancer cells to the extracellular matrix. Biosens Bioelectron, 2008. 23(9): p. 1390-6.
[26] Kurz, C.M., et al., Impedance-controlled cell entrapment using microhole-array chips allows the isolation and identification of single, highly productive cells. Sensors and Actuators B: Chemical, 2011. 158(1): p. 345-352.
[27] Staatz WD, W.J., Pexton T, Santoro SA., The alpha 2 beta 1 integrin cell surface collagen receptor binds to the alpha 1 (I)-CB3 peptide of collagen. The Journal of biological chemistry, 1990: p. 4778-81.
[28] Morton LF, P.A., Zijenah LS, Goodall AH, Humphries MJ, Barnes MJ., Conformation-dependent platelet adhesion to collagen involving integrin alpha 2 beta 1-mediated and other mechanisms- multiple alpha 2 beta 1-recognition sites in collagen type I. The Biochemical Jornal, 1994: p. 791-7.
[29] S. Hiromoto, K.N., T. Hanawa, Electrochemical properties of an interface between titanium and fibroblasts L929. Electrochimica Acta, 2002: p. 387-396.
[30] Fang, Y., Label-Free Biosensors for Cell Biology. International Journal of Electrochemistry, 2011. 2011: p. 1-16.
[31] Olsen, J.V., S.E. Ong, and M. Mann, Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics, 2004. 3(6): p. 608-14.
[32] Meng Lin, M., et al., Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Rev, 2010. 1.
[33] Chang, B.-W., et al., Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sensors and Actuators B: Chemical, 2005. 105(2): p. 159-163.
[34] Moore, E., et al., Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sensors and Actuators B: Chemical, 2009. 139(1): p. 187-193.
[35] Brischwein, M., et al., Electric cell-substrate impedance sensing with screen printed electrode structures. Lab Chip, 2006. 6(6): p. 819-22.
[36] Ceriotti, L., et al., Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron, 2007. 22(12): p. 3057-63.
[37] Cho, S. and H. Thielecke, Micro hole-based cell chip with impedance spectroscopy. Biosens Bioelectron, 2007. 22(8): p. 1764-8.
[38] Arias, L.R., C.A. Perry, and L. Yang, Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens Bioelectron, 2010. 25(10): p. 2225-31.
[39] Reitinger, S., et al., Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron, 2012. 34(1): p. 63-9.
[40] Hildebrandt, C., et al., Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J Biotechnol, 2010. 148(1): p. 83-90.
[41] Qingjun Liu, J.Y., Hui Yu, Lidan Xiao, Ping Wang and Mo Yang, Micro-Electrode Cell-Based Biosensor Using Electrochemica Spectroscopy for Cancer Researchl Impedance. APCMBE 2008, IFMBE Proceedings, 2008: p. 309–312.
[42] Peter Van Gerwen, W.L., Wim Laureys, Guido Huyberechts, Maaike Op De Beeck, Kris Baert, Jan Suls, Willy Sansen, P. Jacobs, Lou Hermans, Robert Mertens, Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B, 1998: p. 73–80.
[43] Alexander, F., D.T. Price, and S. Bhansali, Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells. Journal of Physics: Conference Series, 2010. 224: p. 012134.
[44] J. M. Walker, "The Pretein Portocols Handbook," pp. 7-9.
[45] "Protein and Amino Acid Tests."
[46] 戴佳, 戴衛恆, 8051單晶片C語言應用程式設計實力詳解, 松岡電腦圖書有限公司, 2007
[47] 2010 National Instruments, Taiwan. All rights reserved
[48] 朱朔嘉, 孫家偉, 蕭子健, 自動化量測與控制:LabVIEW, 高立圖書有限公司, 2005
[49] AT89S52 Data Sheet, Atmel Corporation, 2008
[50] MAX232 Data Sheet, Texas Instruments Incorporated, 2004
[51] 張義和, Protel 99 SE電路設計導覽, 高立出版, 2003
[52] ZAHNER Im6/6ex 電化學量測儀操作手冊, ZAHNER
[53] 聯合醫事檢驗所Union Clinical Laboratory, 2011
[54] Xiaoqiu Huang, D.N., David W. Greve, and Michael M. Domach, Simulation of Microelectrode Impedance Changes Due to Cell Growth. IEEE SENSORS JOURNAL, OCTOBER 2004. VOL. 4,: p. 576-583.
[55] D.W. Greve, X. Huang, D. Nguyen, M.M. Domach, “Modeling of impedance of cell-covered electrodes, ” IEEE, 2 (22–24), pp. 1358–1363, 2003.
[56] Domach, X.H.a.D.W.G.a.D.D.N.a.M.M., Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior. IEEE - SENSORS 2003.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2013-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明