參考文獻 |
[1] D. Amadori, L. Gosse, G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic
systems of balance laws, Arch. Rational Mech. Anal. 162 (2002) pp. 327-366.
[2] Y. Chang, J.M. Hong, C.-H. Hsu, Globally Lipschitz continuous solutions to a class of quasi-
linear wave equations, J. Di. Equ. 236 (2007), pp. 504-531.
[3] C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Series of Comprehensive
Studies in Mathematics, Vol. 325, Springer.
[4] C.M. Dafermos, L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dis-
sipation, Indiana U. Math. J. 31 (1982), pp. 471-491.
[5] G. Dal Maso, P. LeFloch, F. Murat, Denition and Weak Stability of Nonconservative Prod-
ucts, J. Math. Pures Appl. 74 (1995), pp. 483-548.
[6] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure
Appl. Math. 18 (1956), pp. 697-715.
[7] J. Groah, J. Smoller, B. Temple, Shock Wave Interactions in General Relativity, Monographs
in Mathematics, Springer, Berlin, New York, 2007.
[8] J.M. Hong, An extension of Glimm’s method to inhomogeneous strictly hyperbolic systems
of conservation laws by weaker than weak" solutions of the Riemann problem, J. Di. Equ.
222 (2006), pp. 515-549.
[9] J.M. Hong, C.H. Hsu, Y.-C. Su, Global solutions for initial-boundary value problem of quasi-
linear wave equations, J. Di. Equ. 245 (2008), pp. 223-248.
[10] J.M. Hong, P.G. LeFloch, A version of Glimm method based on generalized Riemann prob-
lems, J. Portugal Math., Vol. 64, (2007) pp. 199-236.
[11] J.M. Hong, B. Temple, A bound on the total variation of the conserved quantities for solutions
of a general resonant nonlinear balance law, SIAM J. Appl. Math., Vol. 64, No. 3 (2004) pp.
819-857.
[12] E. Isaacson, B. Temple, Nonlinear resonant in inhomogenous systems of conservation laws,
Cotemp. Math., 108, 1990.
[13] Wen-Long Jin, A kinematic wave theory of lane-changing trac
ow, to appear in Trans-
portation research, Part B.
[14] B. Keytz, H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in
elasticity theory, Arch. Ration. Mech. Anal., 72 (1980), pp. 219-241.
[15] S.N. Kruzkov, First order quasilinear equations with several space variables, Mat. USSR Sb.,
10 (1970), pp. 217-243.
[16] P.D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math., 10 (1957),
pp. 537-566.
[17] P.D. Lax, Hyperbolic system of conservation laws and mathematical theory of shock waves.,
Conf. Board Math. Sci., 11, SIAM, 1973.
[18] P.G. LeFloch, Entropy Weak Solutions to Nonlinear Hyperbolic Systems Under Nonconser-
vative Form, Comm. Part. Di. Eq., 13 (1988), pp 669-727.
[19] P.G. LeFloch, T.P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative
form, Forum Math. 5 (1993), pp. 261-280.
[20] T.P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys., 68 (1979), pp. 141-172.
[21] M. Luskin and B. Temple, The existence of a global weak solution to the non-linear water-
hammer problem, Comm. Pure Appl. Math. 35 (1982), pp. 697-735.
[22] T. Nishida, J. Smoller, Mixed problems for nonlinear conservation laws, J. Di. Equ. 23
(1977), pp. 244-269.
[23] O.A. Oleinik, Discontinuous solutions of non-linear dierent equations, Uspekhi Math.
Nauk(N.S.), 12 (1957), pp. 3-73. (Trans. Amer. Math. Soc., Ser. 2, 26, pp. 172-195.)
[24] J. Smoller, Shock Waves and Reaction-Diusion Equations, 2nd ed., Springer-Verlag, Berlin,
New York, 1994.
[25] Ying-Chin Su, Global entropy solutions to a class of quasi-linear wave equations with large
time-oscillating sources , J. Di. Equ. Issue 9 Volume 250, (2011), pp. 3668-3700.
[26] B. Temple, Global solution of the Cauchy problem for a class of 2 2 nonstrictly hyperbolic
conservation laws, Adv. Appl. Math., 3 (1982), pp. 335-375.
[27] B. Whitham, Linear and nonlinear waves, New York : John Wiley, 1974. |