博碩士論文 100323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.223.160.61
姓名 周郁汶(Chou, Yu-Wen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 建築物與地形在大氣邊界層中的流場模擬
(Numerical analysis of building and terrain in the atmospheric boundary layer)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 建築物在不同地形下受到大氣紊流特性影響,造成結構損壞或降低壽命。因此本文針對二維山丘和三維對稱山丘的地形模型重建,以ANSYS FLUENT軟體配合realizable k-ε紊流模型對山丘地形進行大氣邊界層模擬,並比較不同參考風速及地表粗糙程度,分析建築物受地形影響下之橫風向與順風向之受力分析。
為確保模擬結果準確性,驗證的例子,包含單一山丘、山丘與建築物、兩平行建築物及斜型屋頂等。當流體流經山丘後,產生加速現象,進而影響到下游流場;若下游處有建築物等,於建築物的迎風面產生迴流現象,此類迴流又稱為馬蹄型渦流。從斜型屋頂驗證可發現,傾斜式屋頂較平坦屋頂會加速屋頂上方流速。
模擬結果顯示,建築物受到不同的地形影響甚大,當地形為二維時,在流場風速範圍內(<10 m/s),迎風面處的正壓皆在上緣處產生,但隨著地形變為三維時,正壓影響的範圍從上緣變至中間偏高的位置,當風速加至10 m/s時,則正壓變為左側位置,其兩者差異來自三維地形較二維地形多了側向梯度影響造成。建築物受三維地形影響的大氣紊流特性,以建築物的兩側邊最為明顯,當改變不同間距時,迎風面及兩側受到的紊流影響也較二維來得明顯,顯示長時間下,亦受到紊流影響的區域,需加強結構物的強度,而二維地形,少了側向影響,對建築物側邊的影響則見低許多。
受力方面,當地形為二維時,建築物受順向風力及側向風力影響較大,而地形變至三維時,由於多了側向影響,使得建築物背風面之尾流區負壓漸增,使得背風面受力較大。
摘要(英) Buildings on different terrain are affected by atmospheric turbulence characteristics, which cause structural damage or reduce the life of buildings. This study is aimed to study two different terrain models, two-dimensional and three-dimensional hills. The numerical work uses ANSYS FLUENT with the realizable k-ε turbulence model to simulate the atmospheric boundary layer over the hill and buildings and compare effects of wind speed and surface roughness. In addition, analysis of wind forces along the streamwise and side on buildings were also investigated.
To ensure the accuracy of the simulation results, several validation cases were made, including single hill, hill interacted with building, two parallel buildings and sloping roofs cases. When the fluid flows through the hills, resulting in flow acceleration and affecting the downstream flow field; if there is a building behind the hill, recirculation may occurred on the windward side of the building, this is known as horseshoe vortex. From the validation of slanted- and flat-roof buildings, it can be found that the slanted roof-shaped can increase flow velocity at the roof top easily.
This study show that the building was affected by different hills. For two-dimensional hill, the flow field could generate positive pressure at the up edge of windward. As for the three-dimensional hill, the region of positive pressure changed from the up edge to the middle of windward surface. When the wind velocity increase to 10 m/s, positive pressure occur at the left of windward, because of three-dimensional hill have additional lateral gradient effect than the two-dimensional hill.
關鍵字(中) ★ 計算流體力學
★ 山丘與建築物的氣流交互作用
★ 大氣邊界層
關鍵字(英) ★ Computational fluid dynamics
★ Wind flow interaction with hill and building
★ Atmospheric boundary layer
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 研究背景 1
1.1.1 風工程概述 1
1.1.2 風工程發展近況 2
1.2 文獻回顧 2
1.2.1 風洞實驗研究 3
1.2.2 數值模擬研究 5
1.3 研究動機 10
1.4 論文架構 11
第二章 大氣邊界層 12
2.1 大氣結構 12
2.1.1 風的形成 12
2.1.2 大氣穩定度 12
2.2 大氣特性 13
2.2.1 大氣邊界層 13
2.2.2 平均風與脈動風 14
2.2.3 平均風速剖面 15
2.3 粗糙度對大氣影響 15
2.3.1 地表粗糙度的影響 15
2.3.2 地物的影響 16
2.3.3 地形的影響 16
第三章 數值模擬方法 18
3.1 計算流體力學 18
3.2 統御方程式 18
3.3 紊流數值模擬方法 19
3.3.1 標準k-ε紊流模型 20
3.3.2 RNG k-ε紊流模型 21
3.3.3 Realizable k-ε紊流模型 22
3.4 紊流壁面處理方法 24
3.4.1 標準壁面函數 26
3.4.2 非平衡壁面函數 27
3.4.3 增強型壁面函數 28
3.4.4 修正型壁面函數 29
第四章 數值模擬結果驗證 31
4.1 幾何外型 31
4.2 計算區域 33
4.3 網格介紹 36
4.3.1 結構網格與非結構網格 36
4.3.2 網格品質 37
4.3.3 大氣邊界層網格設定 37
4.4 邊界條件 38
4.5 計算方法 40
4.5.1 離散及數值計算介紹 41
4.5.2 壓力基準運算方法流程 42
4.5.3 速度與壓力耦合計算 43
4.6 模擬結果驗證分析 45
4.6.1 網格獨立性測試 45
4.6.2 單一山丘之數值驗證 46
4.6.3 山丘地形與建築物之數值驗證 48
4.6.4 三維兩平行建築物之數值驗證 51
4.6.5 斜型屋頂建築物之數值驗證 54
第五章 斜型建築物風場之數值模擬 59
5.1 流場形態 59
5.1.1 二維山丘地形對建築物之影響 59
5.1.2 三維山丘地形對建築物之影響 62
5.2 速度分布 68
5.2.1 二維山丘地形 68
5.2.2 三維山丘地形 72
5.3 受力分析 74
5.3.1 二維地形與建築物之受力分析 75
5.3.2 三維地形與建築物之受力分析 76
第六章 結論與未來展望 79
6.1 結論 79
6.2 未來改進方向 80
參考文獻 81
參考文獻 建築物耐風設計規範及解說 (2007),中華民國結構工程學會。
朱佳仁 (2006),風工程概論,科技圖書股份有限公司,新北市。
ANSYS, (2009) ANSYS FLUENT theory guide, ANSYS, Inc.
ANSYS, (2009) ANSYS FLUENT user guide, ANSYS, Inc.
Balogh M., Parente A., Benocci C., (2012) RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and Open FOAM, 104-106:360-368.
Berg J., Mann J., Bechmann A., Courtney M. S., Jørgensen H. E., (2011) The Bolund Experiment, Part I: Flow over a steep, three-dimensional hill, Boundary-Layer Meteorol, 141:219-243.
Berg J., Mann J., Bechmann A., Courtney M. S., Jørgensen H. E., (2011) The Bolund experiment, Part II: Blind comparison of microscale flow models, Boundary-Layer Meteorol, 141:245-271.
Blocken B., Carmeliet J., Sathopoulos T., (2007) CFD evaluation of wind speed conditions in passages between parallel buildings-effect wall function roughness modification for the ABL flow, J. Wind Eng. Ind. Aerodyn., 95:941-962.
Blocken B., Stathopoulos T., Carmeliet J., (2007) CFD simulation of the atmospheric boundary layer: wall function problems, Atmospheric Environment, 41:238-252.
Gorle C., Van Beeck J., Rambaud P., Tendeloo G. V., (2009) CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer, Atmospheric Environment, 43:673-681.
Griffiths A. D., Middleton J. H., (2010) Simulations of separated flow over two-dimensional hills, J. Wind Eng. Ind. Aerodyn., 98:155-160.
Hargreaves D.M., Wright N.G., (2007) On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer, J. Wind Eng. Ind. Aerodyn., 95:355-369.
Huser A., Nilsen P. J., Skatun H., (1997) Application of k-ε model to the stable ABL: Pollution in complex terrain, J. Wind Eng. Ind. Aerodyn., 67&68:425-436.
Ishihara T., Hibi K., Oikawa S., (1999) A wind tunnel study of turbulent flow over a three dimensional steep hill, J. Wind Eng. Ind. Aerodyn., 83:95-107.
Kim J. J., Baik J. J., Chun H. Y., (2011) Two-dimensional numerical modeling of flow and dispersion in the presence of hill and buildings, J. Wind Eng. Ind. Aerodyn., 89:947-966.
Li Q. S., Zhi L., Hu F., (2010) Boundary layer wind structure from observation on a 325 m tower, J. Wind Eng. Ind. Aerodyn., 98:818-832.
Lubitz W. D., White B. R., (2007) Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills, J. Wind Eng. Ind. Aerodyn., 95:639-661.
McAuliffe B. R., Larose G. L., (2012) Reynolds-number and surface-modeling sensitivities for experimental simulation of flow over complex topography, J. Wind Eng. Ind. Aerodyn., 104-106:603-613.
O’Sullivan J.P., Archer R.A., Flay R. G. J., (2011) Consistent boundary conditions for flows within the atmospheric boundary layer, J. Wind Eng. Ind. Aerodyn., 99:65-77.
Parente A., Gorle C., van Beek J., Benocci C., (2011) Improved k-ε model and wall function formulation for the RANS simulation of ABL flows, J. Wind Eng. Ind. Aerodyn., 99:267-278.
Port`e-Agel F., Wu Y. T., Lu H., Robert, (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms, J. Wind Eng. Ind. Aerodyn., 99:154-168.
Richards P.J., Hoxey R.P., (1993) Appropriate boundary conditions for computational wind engineering models using k-ε turbulence model, J. Wind Eng. Ind. Aerodyn., 46&47:65-77.
Sherman D. J., (1992) An equilibrium relationship for shear velocity and apparent roughness length in aeolian salation, Geomorphology, 5:419-431.
Takahashi T., Kato S., Murakami S., Ooka R., Yassin M. F., Kono R., (2005) Consistent boundary conditions for flows within the atmospheric boundary layer, J. Wind Eng. Ind. Aerodyn., 93:155-169.
Takahashi T., Ohtsu T., Yassin M. F., S. Kato, S. Murakami, (2002) Turbulence characteristics of wind over a hill with a rough surface, J. Wind Eng. Ind. Aerodyn., 90:1697-1706.
Tominaga Y., Mochida A., Yoshie R., Kataoka H., Nozu T., Yoshikawa M., Shirasawa T., (2008) AIJ guideline for practical applications of CFD to pedestrian wind environment around buildings, Atmospheric Environment, 96:1749-1761.
Yang Y., Gu M., Chen S., Jin3 X., (2009) New inflow boundary conditions for modeling the neutral equilibrium ABL in computational wind engineering, J. Wind Eng. Ind. Aerodyn., 97:88-95.
指導教授 吳俊諆(Wu, Jiunn-Chi) 審核日期 2013-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明