博碩士論文 992204014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.216.160.84
姓名 游佩茹(Pei-Ju Yu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控
(PDE Inhibitors and cAMP Signaling Regulate IFN-g and IL-17A Release from CD4+ T Cells in Mouse Models of Rheumatoid Arthritis)
相關論文
★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應
★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響
★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α
★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色
★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P
★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults★ Viscolin對不同免疫細胞發炎反應的影響
★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節
★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控★ 環狀核苷酸磷酸二酯酶4對LPS刺激小鼠巨噬細胞產生IL-1Ra之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 類風濕性關節炎(Rheumatoid arthritis, RA)是一種複雜的慢性自體免疫疾病,目前影響全球1-2%人口,該病主要侵犯關節部位軟、硬骨組織,其致病機制至今仍不完全明瞭。文獻指出,增加免疫細胞內cAMP濃度可有效降低多種免疫發炎反應,進而改善慢性發炎疾病如氣喘、COPD與過敏性皮膚炎等。第四型環狀核苷磷酸雙酯酶 (phosphodiesterase 4, PDE4)是免疫細胞中主要水解cAMP的酵素,抑制PDE4可增加細胞內cAMP,因此臨床上PDE4抑制劑被廣泛研發為抗發炎藥劑。研究指出,PDE4抑制劑處理膠原蛋白誘發關節炎小鼠能改善關節炎症狀,然而其作用機制仍不甚明瞭。已知Th1與Th17細胞激素IFN-與IL-17A在RA致病過程中扮演重要的角色,因此本研究欲探討PDE4或cAMP信號傳導是否在RA致病過程中參與Th1與Th17細胞激素的調控。我們首先利用RA動物模型,即膠原蛋白誘發關節炎(collagen-induced arthritis, CIA)模型誘導C57BL/6與DBA/1小鼠發病,結果顯示,兩種小鼠的誘發率分別為45% (C57BL/6)與91% (DBA/1),發病高峰期分別約在21-42天與27-33天,而早期認為對CIA有阻抗性之C57BL/6小鼠於本實驗中也能誘發出嚴重的關節炎。接著我們利用不同的致敏方法,即id./id.模型(將雞隻膠原蛋白(CII)先後注射於小鼠尾巴根部皮下)與id./ip.模型(將CII先後注射於小鼠尾巴根部皮下與腹腔內),使DBA/1小鼠對CII產生免疫反應,之後以小鼠脾臟或腹股溝淋巴結T細胞進行實驗,結果顯示兩種致敏方法均可刺激CII專一性Th1與Th17細胞之活化。同時,我們發現CII或-CD3抗體可刺激兩種淋巴組織T細胞釋放IFN-與IL-17A,而PDE4抑制劑rolipram可有效抑制此等反應(除了腹股溝淋巴結細胞對IL-17A的釋放外)。此外,非選擇性PDE抑制劑IBMX對IFN-與IL-17A的釋放也有相當程度的抑制作用,表示在11個PDE家族中PDE4應是主要調控此等反應的酵素。再者,使用cAMP增升劑如dbcAMP與forskolin處理細胞,其抑制兩種細胞激素的程度與rolipram相似,因此我們推測rolipram的抑制作用是由於增加細胞內cAMP所致。而藉由PKA、Epac活化劑與抑制劑的使用,我們進一步發現rolipram的抑制作用是經由活化PKA訊號傳導所致。此外,PDE3抑制劑cilostazol與PDE7抑制劑BRL 50481對CIA小鼠之Th1與Th17免疫反應多不具抑制作用,然而cilostazol卻能協同rolipram使IFN-與IL-17A的抑制作用更為顯著。為此,我們推測PDE4選擇性抑制劑能改善RA的發炎反應,而PDE3與PDE4雙重抑制劑應可更有效地減緩RA病症。
摘要(英) Rheumatoid arthritis (RA) is a complicated, chronic autoimmune disorder that affects 1-2% population worldwide. It primarily attacks cartilage and bone of joints. The etiology of the disease still remains to be defined. Accumulating evidence indicates that elevation of intracellular cAMP concentration can suppress a vast spectrum of inflammatory responses in most immune cells and, thereby ameliorate chronic inflammatory diseases, such as asthma, COPD, and atopic dermatitis. Type 4 phosphodiesterases (PDE4s) are the major cAMP-hydrolyzing enzymes in various inflammatory cells. Inhibition of PDE4, thus increasing intracellular cAMP, has been considered an attractive strategy for developing anti-inflammatory drugs. Using collagen-induced arthritis (CIA) models, previous studies show potential benefits of PDE4 inhibitors in RA, while the mechanism of the effect remains unclear. Moreover, the Th1 and Th17 cytokines IFN- and IL-17A, respectively, are known important in the pathogenesis of RA. Therefore, in this study we employed CIA models to access whether PDE4 or cAMP signaling is involved in regulation of Th1 and Th17 responses in RA. By immunization of C57BL/6 and DBA/1 mice with chick collagen II (CII), we found that the disease incidence for the two mouse strains were 45% and 91%, respectively, and the arthritic symptoms developed during 21-42 and 27-33 days, respectively, after collagen immunization. In addition, the C57BL/6 mice, considered genetically resistant to CIA in early studies, also developed severe arthritic conditions. Immunization of DBA/1 mice with CII by different protocols (i.e. the id./id. and id./ip. models) indicated that both models induced the activation of CII-specific Th1 and Th17 cells in the spleen and draining (inguinal) lymph nodes of these mice. In vitro stimulation with CII and/or -CD3 antibody revealed a significant increase in IFN-and IL-17A release in T cells of the two lymphoid tissues from the two models, and these responses were significantly inhibited by the PDE4 inhibitor rolipram except for the release of IL-17A in the inguinal lymph node cells. The non-selective PDE inhibitor IBMX also attenuated IFN- and IL-17A release in these T cells to an extent similar to that of rolipram, indicating PDE4 is the major PDE isozymes in regulation of the Th1 and Th17 responses. Studies with the cAMP-elevating agents dbcAMP and forskolin and with PKA and Epac activators and inhibitors further suggested that the inhibitory effect of rolipram was mediated by activation of the cAMP/PKA axis. The PDE3 inhibitor cilostazol and PDE7 inhibitor BRL 50481 mostly had no effect on the Th1 and Th17 responses, whereas cilostazol showed synergistic effect to the rolipram inhibition. In conclusion, these findings indicate that PDE4 selective inhibitors can efficaciously alleviate inflammation in RA, yet PDE3 and PDE4 dual inhibitors may be more beneficial to RA patients.
關鍵字(中) ★ 類風濕性關節炎
★ 膠原蛋白誘發關節炎
★ CD4+ T 細胞
★ IFN-g
★ IL-17A
關鍵字(英)
論文目次 目錄
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
縮寫檢索表 x
一、 緒論 1
1-1 類風濕性關節炎(Rheumatoid arthritis, RA) 1
1-1-1 類風濕性關節炎的致病機制 1
1-1-2 T細胞與類風濕性關節炎 3
1-1-3 TNF-, IL-1, IFN-, IL-17與類風濕性關節炎 4
1-1-4 膠原蛋白誘發關節炎模型 (collagen-induced arthritis, CIA) 7
1-2 環狀線苷單磷酸 (Adenosine 3’, 5’-cyclic monophosphate, cAMP)之訊息傳導 9
1-2-1 cAMP訊息傳導與免疫發炎反應 10
1-3 環狀核苷酸磷酸二酯酶 (Cyclic nucleotide phosphodiesterases, PDEs) 11
1-3-1 PDE4結構、功能與表現 12
1-3-2 PDE4與T細胞免疫發炎反應 14
1-4 PDE4/cAMP訊息傳導與類風濕性關節炎 15
二、 研究動機與目的 17
三、 材料與方法 18
3-1 材料 18
3-1-1 實驗藥材 18
3-1-2 實驗小鼠 19
3-1-3 實驗試劑 19
3-1-3-1 第二型膠原蛋白 19
3-1-3-2 皮下注射佐劑 19
3-1-3-3 腹腔注射試劑 20
3-1-3-4 RPMI 1640細胞培養基 20
3-1-3-5 去除B細胞 (B cell panning)培養皿之製備 20
3-2 實驗方法 20
3-2-1 膠原蛋白誘導小鼠關節炎 (Collagen-induced arthritis, CIA) 20
3-2-2 小鼠膠原蛋白誘發關節炎之病症嚴重程度評估 21
3-2-3 淋巴結細胞分離與培養 22
3-2-4 脾臟細胞分離與培養 22
3-2-5 以磁珠抗體純化CD4+ T細胞 23
3-2-6 以磁珠抗體製備抗原呈現細胞 24
3-2-7 Mitomycin C處理抗原呈現細胞 25
3-2-8 CD4+ T細胞與抗原呈現細胞共同培養 25
3-2-9 細胞激素含量測定 25
四、 實驗結果 27
4-1 第二型膠原蛋白誘發C57BL/6與DBA/1小鼠關節炎(collagen-induced arthritis, CIA) 之比較 27
4-2 Rolipram抑制膠原蛋白刺激id/ip模型小鼠脾臟細胞釋放IFN-及IL-17A 27
4-3 PDE抑制劑與cAMP增升劑對id/id及id/ip模型小鼠腹股溝淋巴細胞釋放IFN-與IL-17A之影響 28
4-4 PDE抑制劑與cAMP增升劑對id/ip模型小鼠脾臟細胞釋放IFN-與IL-17A之影響 30
4-5 Rolipram抑制膠原蛋白與-CD3抗體刺激id/ip模型小鼠脾臟細胞釋放IFN-與IL-17A之cAMP訊息傳導路徑 32
4-6 PDE抑制劑與cAMP增升劑對膠原蛋白致敏(primed)小鼠腹股溝淋巴結CD4+ T細胞釋放IFN-與IL-17A之影響與其cAMP訊息傳導路徑 33
4-7 PDE抑制劑與cAMP增升劑對id/ip模型小鼠脾臟CD4+ T細胞釋放IFN-與IL-17A之影響與其cAMP訊息傳導路徑 34
五、 討論 36
5-1 膠原蛋白誘發C57BL/6與DBA/1小鼠關節發炎之比較 36
5-2 PDE4/cAMP訊息傳導對T細胞釋放IFN-與IL-17A之調控 37
5-3 Rolipam抑制CIA小鼠T細胞釋放IFN-與IL-17A之訊息傳導路徑 40
六、 圖與圖解 42
參考文獻 59
附錄 74
參考文獻 Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Human Th17 cells: are they different from murine Th17 cells? Eur J Immunol. 2009; 39(3):637-40.
Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005; 174(2):595-9.
Asquith DL, McInnes IB. Emerging cytokine targets in rheumatoid arthritis. Curr Opin Rheumatol. 2007; 19(3):246-51.
Baillie GS, MacKenzie SJ, McPhee I, Houslay MD. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity ofPDE4 cyclic AMP-specific phosphodiesterases. Br J Pharmacol. 2000; 131(4):811-9.
Bankhurst AD, Husby G, Williams RC Jr. Predominance of T cells in the lymphocytic infiltrates of synovial tissues in rheumatoid arthritis. Arthritis Rheum. 1976; 19(3):555-62.
Banner KH, Trevethick MA. PDE4 inhibition: a novel approach for the treatment of inflammatory bowel disease. Trends Pharmacol Sci. 2004; 25(8):430-6.
Beard MB, Olsen AE, Jones RE, Erdogan S, Houslay MD, Bolger GB. UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions. J Biol Chem. 2000; 275(14):10349-58.
Beavo JA, Francis SH, Houslay MD, (Eds.). Cyclic Nucleotide Phosphodiesterases in Health and Disease. Boca Raton, FL. 2007. CRC Press:3-17.
Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986; 319(6053):516-8.
Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008; 453(7198):1051-7
Bevaart L, Vervoordeldonk MJ, Tak PP. Collagen-Induced Arthritis in Mice. Mouse Models for Drug Discovery Chapter 11. Methods in Molecular Biology. 2010. 602:181-192.
Bhattacharya M, Babwah AV, Ferguson SS. Small GTP-binding protein-coupled receptors. Biochem Soc Trans. 2004; 32 (Pt 6):1040-4.
Boissier MC, Chiocchia G, Bessis N, Hajnal J, Garotta G, Nicoletti F, Fournier C. Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur J Immunol. 1995; 25(5):1184-90.
Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M, Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential target for antidepressant drugs. Mol Cell Biol. 1993; 13(10):6558-71.
Bradley J, Reisert J, Frings S. Regulation of cyclic nucleotide-gated channels. Curr Opin Neurobiol. 2005; 15(3):343-9.
Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989; 2(8657):244-7.
Campbell IK, Hamilton JA, Wicks IP. Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis. Eur J Immunol. 2000; 30(6):1568-75.
Castro A, Jerez MJ, Gil C, Martinez A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med Res Rev. 2005; 25(2):229-44.
Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001; 3(3):168-77.
Chabaud M, Miossec P. The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum. 2001; 44(6):1293-303.
Chikanza IC, Jawed SJ, Blake DR, Perrot S, Menkes CJ, Barnes CG, Perry JD, Wright MG. Treatment of patients with rheumatoid arthritis with RP73401 phosphodiesterase type IV inhibitor. Arthritis Rheum. 1996; 39(9 Suppl.): S282.
Cho JY, Park JS, Baik KU, Lee JG, Kim HP, Yoo ES, Park MH. Differential effect of phosphodiesterase IV inhibitor RP73401 on various inflammatory and immuneresponses relevent to rheumatoid arthritis. Pharmacol Res. 2004; 49(5):423-31.
Chu CQ, Field M, Feldmann M, Maini RN. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction inpatients with rheumatoid arthritis. Arthritis Rheum. 1991; 34(9):1125-32.
Chu CQ, Song Z, Mayton L, Wu B, Wooley PH. IFN-gamma deficient C57BL/6 (H-2b) mice develop collagen induced arthritis with predominant usage of T cell receptor Vbeta6 and Vbeta8 in arthritic joints. Ann Rheum Dis. 2003; 62(10):983-90.
Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med. 2000; 192(1):123-8.
Claveau D, Chen SL, O’Keefe S, Zaller DM, Styhler A, Liu S, Huang Z, Nicholson DW, Mancini JA. Preferential inhibition of T helper 1, but not T helper 2, cytokines in vitro by L-826,141 [4-[2-(3,4-Bisdifluromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]3-methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther. 2004; 310(2):752-60.
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007; 76:481-511.
Conti M, Jin SL. The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 1999; 63:1-38.
Courtenay, JS, Dallman, MJ, Dayan, AD, Martin, A, Mosedale, B. Immunisation against heterologous type II collagen induces arthritis in mice .Nature. 1980; 283(5748):666-8.
Crilly A, Robertson SE, Reilly JH, Gracie JA, Lai WQ, Leung BP, Life PF, McInnes IB. Phosphodiesterase 4 (PDE4) regulation of proinflammatory cytokine and chemokine release from rheumatoid synovial membrane. Ann Rheum Dis. 2011; 70(6):1130-7.
Dayer JM, Beutler B, Cerami A. Cachectidtumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 1985; 162, 2163-8.
Diamant Z, Spina D. PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther. 2011; 24(4):353-60.
Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008; 8(5):337-48.
Doodes PD, Cao Y, Hamel KM, Wang Y, Farkas B, Iwakura Y, Finnegan A. Development of proteoglycan-induced arthritis is independent of IL-17. J Immunol. 2008; 181(1):329-37.
Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007; 27:79-101.
Durrant DM, Metzger DW. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Invest. 2010; 39(4-5):526-49.
Ehinger M, Vestberg M, Johansson AC, Johannesson M, Svensson A, Holmdahl R. Influence of CD4 or CD8 deficiency on collagen-induced arthritis. Immunology. 2001; 103(3):291-300.
Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breedveld FC, Macfarlane JD, Bijl H, Woody, J.N. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet. 1994; 344(8930):1105-10.
Essayan DM, Kagey-Sobotka A, Lichtenstein LM, Huang SK. Differential regulation of human antigen-specific Th1 and Th2 lymphocyte responses by isozyme selective cyclic nucleotide phosphodiesterase inhibitors. J Pharmacol Exp Ther. 1997; 282(1):505-12.
Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol. 2001; 108(5):671-80.
Fedyk ER, Adawi A, Looney RJ, Phipps RP. Regulation of IgE and cytokine production by cAMP: implications for extrinsic asthma. Clin Immunol Immunopathol. 1996; 81(2):101-13.
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003; 423(6937):356-61.
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995; 1(1):27-31.
Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B,Rouvier E, Golstein P, Banchereau J, Lebecque S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996; 183(6):2593-603.
Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci. 1999; 36(4):275-328.
Franklin EC, Holman HR, Muller-Eberhard HJ, Kunkel HG. An unusual protein component of high molecular weight in the serum of certain patients with rheumatoid arthritis. J Exp Med. 1957; 105(5):425-38.
Furst DE. Anakinra: review of recombinant human interleukin-I receptor antagonist in the treatment of rheumatoid arthritis. Clin Ther. 2004; 26(12):1960-75.
Gamble JR , Harlan JM , Klebanoff SJ , Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci .1985; 82(24): 8667–8671.
Geboes L, Dumoutier L, Kelchtermans H, Schurgers E, Mitera T, Renauld JC, Matthys P. Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum. 2009; 60(2):390-5.
Giembycz MA, Corrigan CJ, Seybold J, Newton R, Barnes PJ. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br J Pharmacol. 1996; 118(8):1945-58.
Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol. 2001; 41:145-74.
Hansen G, Jin S, Umetsu DT, Conti M. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci. 2000; 97(12):6751-6.
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2lineages. Nat Immunol. 2005; 6(11):1123-32.
Hitchon CA, Alex P, Erdile LB, Frank MB, Dozmorov I, Tang Y, Wong K, Centola M, El-Gabalawy HS. A distinct multicytokine profile is associated with anti-cyclical citrullinated peptide antibodies in patients with early untreated inflammatory arthritis. J Rheumatol. 2004; 31(12):2336-46.
Holmdahl R, Jonsson R, Larsson P, Klareskog L. Early appearance of activated CD4+ T lymphocytes and class II antigen-expressing cells in joints of DBA/1mice immunized with type II collagen. Lab Invest. 1988; 58(1):53-60.
Holmdahl R, Klareskog L, Rubin K, Larsson E, Wigzell H. T lymphocytes in collagen II-induced arthritis in mice. Characterization of arthritogenic collagen II-specific T-cell lines and clones. Scand J Immunol. 1985; 22(3):295-306.
Houslay MD, Sullivan M, Bolger GB. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressantactions. Adv Pharmacol. 1998; 44:225-342.
Houslay MD. PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 2001; 69:249-315.
Houslay MD. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci. 2010; 35(2):91-100.
Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells. 2005; 19(2):180-4.
Inglis JJ, Criado G, Medghalchi M, Andrews M, Sandison A, Feldmann M, Williams RO. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res Ther. 2007; 9(5):R113.
Jacob C, Szilagyi C, Allen JM, Bertrand C, Lagente V. Role of PDE4 in superoxide anion generation through p44/42MAPK regulation: a cAMP and a PKA-independent mechanism. Br J Pharmacol. 2004; 143(2):257-68.
Jäger A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol. 2010; 72(3):173-84.
Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci. 2002; 99(11):7628-33.
Jin SL, Ding SL, Lin SC. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med J. 2012; 35(3):197-210.
Jin SL, Goya S, Nakae S, Wang D, Bruss M, Hou C, Umetsu D, Conti M. Phosphodiesterase 4B is essential for T(H)2-cell function and development of airway hyperresponsivenessin allergic asthma. J Allergy Clin Immunol. 2010; 126(6):1252-9.
Jin SL, Lan L, Zoudilova M, Conti M. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol. 2005; 175(3):1523-31.
Jin SL, Swinnen JV, Conti M. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain. J Biol Chem. 1992; 267(26):18929-39.
Joe B, Wilder RL. Animal models of rheumatoid arthritis. Mol Med Today. 1999; 5(8):367-9.
Jones NA, Boswell-Smith V, Lever R, Page CP. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther. 2005; 18(2):93-101.
Joosten LAB, Helsen MMA, van de Loo FAJ, van den Berg WB. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study wsing anti-TNF-, anti-IL-1 /, and IL-1Ra. Arthritis Rheum. 1996; 39:797-809.
Joosten LAB, van den Berg WB. Murine collagen induced arthritis. In vivo model of inflammation. In Vivo Models of Inflammation. Progress in Inflammation Research 2006; 35-63.
Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998; 160(7):3513-21.
Kannan K, Ortmann RA, Kimpel D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology. 2005; 12(3):167-81.
Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin andsynovial fibroblasts: a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis Rheum. 2001; 44(9):2176-84.
Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, Shnier R, Portek IJ. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006; 54(4):1122-31.
Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten LA, Schurr JR, Schwarzenberger P, van den Berg WB, Lubberts E. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcalcell wall-induced arthritis. Arthritis Rheum. 2005; 52(10):3239-47.
Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999; 103(9):1345-52.
Kovala T, Sanwal BD, Ball EH. Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry. 1997; 36(10):2968-76.
Laemont KD, Schaefer CJ, Juneau PL, Schrier DJ. Effects of the phosphodiesterase inhibitor rolipram on streptococcal cell wall-induced arthritis in rats. Int J Immunopharmacol. 1999; 21(11):711-25.
Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001; 358(9285):903-11.
Li L, Yee C, Beavo JA. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science. 1999; 283(5403):848-51.
Lim J, Pahlke G, Conti M. Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. Identification and function of an inhibitory domain. J Biol Chem. 1999; 274(28):19677-85.
Loza MJ, Foster S, Peters SP, Penn RB. Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells. Blood. 2006; 107(5):2052-60.
Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, Schwarzenberger P, van de Loo FA, van den Berg WB. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol. 2001; 167(2):1004-13.
Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther. 2004; 7(1):29-37.
Lubberts E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine. 2008; 41(2):84-91.
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther. 2006; 109(3):366-98.
Luross JA, Williams NA. The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology. 2001; 103(4):407-16.
Ma R, Yang BY, Wu CY. A selective phosphodiesterase 4 (PDE4) inhibitor Zl-n-91 suppresses IL-17 production by human memoryTh17 cells. Int Immunopharmacol. 2008; 8(10):1408-17.
MacKenzie SJ, Baillie GS, McPhee I, MacKenzie C, Seamons R, McSorley T, Millen J, Beard MB, van Heeke G, Houslay MD. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylationof a single serine residue in Upstream Conserved Region 1 (UCR1). Br J Pharmacol. 2002; 136(3):421-33.
Malfait AM, Malik AS, Marinova-Mutafchieva L, Butler DM, Maini RN, Feldmann M. The 2-adrenergic agonist salbutamol is a potent suppressor of established collagen-induced arthritis: mechanisms of action. J Immunol. 1999; 162(10):6278-83.
Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of thenuclear receptor RORgammat. Nat Immunol. 2008; 9(6):641-9.
Mauritz NJ, Holmdahl R, Jonsson R, Van der Meide PH, Scheynius A, Klareskog L. Treatment with gamma-interferon triggers the onset of collagen arthritis in mice. Arthritis Rheum. 1988; 31(10):1297-304.
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001; 2(8):599-609.
McCahill A, McSorley T, Huston E, Hill EV, Lynch MJ, Gall I, Keryer G, Lygren B, Tasken K, van Heeke G, Houslay MD. In resting COS1 cells a dominant negative approach shows that specific, anchored PDE4 cAMP phosphodiesterase isoforms gate the activation, by basal cyclic AMP production, of AKAP-tethered protein kinase A type II located in the centrosomal region. Cell Signal. 2005; 17(9):1158-73.
McCann FE, Palfreeman AC, Andrews M, Perocheau DP, Inglis JJ, Schafer P, Feldmann M, Williams RO, Brennan FM. Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha fromhuman rheumatoid synovial cells and ameliorates experimental arthritis. Arthritis Res Ther. 2010; 12(3):R107.
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007; 7(6):429-42.
Mehats C, Andersen CB, Filopanti M, Jin SL, Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 2002; 13(1):29-35.
Miossec P. IL-17 in rheumatoid arthritis: a new target for treatment or just another cytokine? Joint Bone Spine. 2004; 71(2):87-90.
Monari C, Bevilacqua S, Piccioni M, Pericolini E, Perito S, Calvitti M, Bistoni F, Kozel TR, Vecchiarelli A. A microbial polysaccharide reduces the severity of rheumatoid arthritis by influencing Th17 differentiationand proinflammatory cytokines production. J Immunol. 2009; 183(1):191-200.
Mugnier B, Roudier J. Factors predicting responsiveness to anti-TNF therapy in patients with rheumatoid arthritis: using biotherapies rationally. Joint Bone Spine Volume 71. 2004; 71: 91-94.
Müssener A, Litton MJ, Lindroos E, Klareskog L. Cytokine production in synovial tissue of mice with collagen-induced arthritis (CIA). Clin Exp Immunol. 1997; 107(3):485-93.
Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003; 171(11):6173-7.
Nakajima A, Seroogy CM, Sandora MR, Tarner IH, Costa GL, Taylor-Edwards C, Bachmann MH, Contag CH, Fathman CG. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest. 2001; 107(10):1293-301.
Nepom GT, Byers P, Seyfried C, Healey LA, Wilske KR, Stage D, Nepom BS. HLA genes associated with rheumatoid arthritis. Identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum. 1989; 32(1):15-21.
Nyman U, Müssener A, Larsson E, Lorentzen J, Klareskog L. Amelioration of collagen II-induced arthritis in rats by the type IV phosphodiesterase inhibitor Rolipram. Clin Exp Immunol. 1997; 108(3):415-9.
Ortmann RA, Shevach EM. Susceptibility to collagen-induced arthritis: cytokine-mediated regulation. Clin Immunol. 2001; 98(1):109-18.
Ozegbe P, Foey AD, Ahmed S, Williams RO. Impact of cAMP on the T-cell response to type II collagen. Immunology. 2004; 111(1):35-40.
Page CP, Spina D. Phosphodiesterase inhibitors in the treatment of inflammatory diseases. Handb Exp Pharmacol. 2011; 204:391-414.
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005; 6(11):1133-41.
Peck A, Mellins ED. Breaking old paradigms: Th17 cells in autoimmune arthritis. Clin Immunol. 2009; 132(3):295-304.
Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ Tcells: predominant role of PDE4D. J Immunol. 2007; 178(8):4820-31.
Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatoryreactions. J Clin Invest. 1998; 101(4):746-54.
Reimann EM, Walsh DA, Krebs EG. Purification and properties of rabbit skeletal muscle adenosine 3’,5’-monophosphate-dependent protein kinases. J Biol Chem. 1971; 246(7):1986-95.
Richter W, Conti M. The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. J Biol Chem. 2004; 279(29):30338-48.
Ross SE, Williams RO, Mason LJ, Mauri C, Marinova-Mutafchieva L, Malfait AM, Maini RN, Feldmann M. Suppression of TNF-alpha expression, inhibition of Th1 activity, and amelioration of collagen-induced arthritis by rolipram. J Immunol. 1997; 159(12):6253-9.
Sanz MJ, Cortijo J, Taha MA, Cerdá-Nicolás M, Schatton E, Burgbacher B, Klar J, Tenor H, Schudt C, Issekutz AC, Hatzelmann A, Morcillo EJ. Roflumilast inhibits leukocyte-endothelial cell interactions, expression of adhesion molecules andmicrovascular permeability. Br J Pharmacol. 2007; 152(4):481-92.
Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010; 376(9746):1094-108.
Sekut L, Yarnall D, Stimpson SA, Noel LS, Bateman-Fite R, Clark RL, Brackeen MF, Menius JA Jr, Connolly KM. Anti-inflammatory activity of phosphodiesterase (PDE)-IV inhibitors in acute and chronic models of inflammation. Clin Exp Immunol. 1995; 100(1):126-32.
Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol. 2008; 39(2):127-32.
Sette C, Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996; 271(28):16526-34.
Seybold J, Newton R, Wright L, Finney PA, Suttorp N, Barnes PJ, Adcock IM, Giembycz MA. Induction of phosphodiesterases 3B, 4A4, 4D1, 4D2, and 4D3 in Jurkat T-cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor agonists. Potential role in beta2-adrenoreceptor desensitization. J Biol Chem. 1998; 273(32):20575-88.
Shabb JB. Physiological substrates of cAMP-dependent protein kinase. Chem Rev. 2001; 101(8):2381-411.
Souness JE, Foster M. Potential of phosphodiesterase type of IV inhibitors in the treatment of rheumatoid arthritis. IDrugs. 1998; 1(5):541-53.
Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest. 1976; 57(5):1148-57.
Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol. 2007; 19(3):281-6.
Sutherland EW, Rall TW. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 1958; 232(2):1077-91.
Tak PP, Bresnihan B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsyand tissue analysis. Arthritis Rheum. 2000; 43(12):2619-33.
Tan W, Huang W, Zhong Q, Schwarzenberger P. IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation. J Immunol. 2006; 176(10):6186-93.
Tenor H, Schudt C. Analysis of PDE isoenzyme profiles in cells and tissues by pharmacological methods. In: Schudt C, Dent G, Rabe KF. (eds). Phosphodiesterase Inhibitors, Handbook of Immunopharmacology. Academic Press. 1996; 21-40.
Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A. 1992; 89(16):7375-9.
Torphy TJ. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med. 1998; 157(2):351-70.
Tsai HC, Wu R. Cholera Toxin Directly Enhances IL-17A Production from Human CD4+ T Cells. J Immunol. 2013; 191(8):4095-4102.
van der Linden MP, van der Woude D, Ioan-Facsinay A, Levarht EW, Stoeken-Rijsbergen G, Huizinga TW, Toes RE, van der Helm-van Mil AH. Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide comparedwith second-generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcomein undifferentiated arthritis and rheumatoid arthritis. Arthritis Rheum. 2009; 60(8):2232-41.
Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol. 1997; 158(11):5507-13.
Vilcek J, Palombella VJ, Henriksen-DeStefano D, Swenson C, Feinman R, Hirai M, Tsujimoto M. Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J Exp Med. 1986; 163(3):632-43.
Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA. 1992; 89(20):9784-8.
Williams RO. Collagen-induced arthritis as a model for rheumatoid arthritis. Methods Mol Med. 2004; 98:207-16.
Wooley PH, Dutcher J, Widmer MB, Gillis S. Influence of a recombinant human soluble tumor necrosis factor receptor FC fusion protein on type II collagen-induced arthritis in mice. J Immunol. 1993; 151(11):6602-7.
Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med. 1981; 154(3):688-700.
Wooley PH. Collagen-induced arthritis in the mouse. Methods Enzymol. 1988; 162:361-73.
Xu XJ, Reichner JS, Mastrofrancesco B, Henry WL Jr, Albina JE. Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production. J Immunol. 2008; 180(4):2125-31.
Yadav M, Rosenbaum J, Goetzl EJ. Cutting edge: vasoactive intestinal peptide (VIP) induces differentiation of Th17 cells with a distinctive cytokine profile. J Immunol. 2008; 180(5):2772-6.
Yamamoto S, Sugahara S, Ikeda K, Shimizu Y. Amelioration of collagen-induced arthritis in mice by a novel phosphodiesterase 7 and 4 dual inhibitor, YM-393059. Eur J Pharmacol. 2007; 559(2-3):219-26.
Yoshida H, Hashizume M, Mihara M. IL-6 blockade preferentially inhibits Th17 differentiation in collagen-induced arthritis. Rheumatol Int. 2011; 31(1):127-31.
Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, Okada Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis. 2000; 59(6):455-61.
Yoshino S. Effect of a monoclonal antibody against interleukin-4 on collagen-induced arthritis in mice. Br J Pharmacol. 1998; 123(2):237-42.
Zhou W, Hashimoto K, Goleniewska K, O’Neal JF, Ji S, Blackwell TS, Fitzgerald GA, Egan KM, Geraci MW, Peebles RS Jr. Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J Immunol. 2007; 178(2):702-10.
Zvaifler NJ. The immunopathology of joint inflammation in rheumatoid arthritis. Adv Immunol. 1973;16:265-336.
指導教授 金秀蓮(S.-L. Catherine Jin) 審核日期 2013-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明