博碩士論文 100226009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.15.223.129
姓名 林信甫(Hsin-Fu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層
(Growth of GaN on Si substrates with ZnO buffer layer)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝
★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體★ 強度敏感式影像橢圓儀及應用
★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井
★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討★ 氮化物表面電漿生醫感測之理論分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以濺鍍的方式,在(100)矽基板上得到60-100 nm厚的氧化鋅薄膜,作為氮化鎵在矽基板上的磊晶緩衝層。此氧化鋅薄膜能緩衝氮化鎵與矽之間的晶格差異,在理論上可提升氮化鎵磊晶層的結晶品質。根據X光繞射儀的量測結果,氧化鋅薄膜晶向為c-plane方向。氮化鎵磊晶層是以有機金屬化學氣相沉積(MOCVD)系統完成的。在磊晶過程中,重要的參數包括基板溫度、時間、壓力及氣流五三比。我們利用掃描式電子顯微鏡(SEM)以及原子力顯微鏡(AFM)來觀察磊晶表面情形,並發現濺鍍而成的氧化鋅會形成奈米柱的結構,使得氮化鎵的磊晶層表面呈現微米尺度的多晶梯型結構。
除了c-plane的氧化鋅,我們還製備m-plane的氧化鋅薄膜。m-plane氧化鋅薄膜的目的是要藉由消除量子侷限史塔克效應,來提升氮化銦鎵量子井的發光結合效率。我們發現適當的退火條件以及水熱法的再生機制,可改變氧化鋅分子堆疊的方向,因而得到m-plane的氧化鋅薄膜,而其中重要的參數包括:薄膜厚度、退火溫度、以及水熱法的環境條件。
摘要(英) In this research, a thin (60-100 nm) ZnO layer deposited by sputtering is employed as the buffer layer for the epitaxial growth of GaN on (100) Si substrates. The ZnO buffer mitigates the huge lattice mismatch between GaN and Si, and therefore is expected to improve the crystal qualities of GaN. The orientation of the sputtered ZnO thin film is along the c-axis according to X-ray diffraction (XRD) ω-2θ measurements. During the growth of GaN in the metal organic chemical vapor deposition (MOCVD) system, the important parameters include substrate temperature, growth duration, reactor pressure and V/III ratio. The morphology of GaN epilayers are analyzed by scanning electron microscope (SEM) and atomic force microscopy (AFM). It is found that polycrystalline GaN micro-trapezoids are formed on the ZnO buffer, which is believed to stem from the unique rod-like ZnO nanostructure produced by the sputtering process.
In addition to the c-plane ZnO buffer, m-plane ZnO layer is also prepared in this project. The goal of m-plane ZnO buffer is to build nonpolar InGaN multiple quantum wells, in which the radiative recombination efficiency can be enhanced by eliminating the undesired quantum-confined Stark effect (QCSE). The m-plane ZnO layer is realized by a post-annealing at 850 °C after the sputtering process, followed by the hydrothermal regrowth of ZnO at 90 °C for 2 hours. Preliminary results show that the orientation of the ZnO layer is strongly dependent on layer thickness, post-annealing temperature, annealing environment, and the conditions of the hydrothermal regrowth.
關鍵字(中) ★ 氧化鋅
★ 氮化鎵
關鍵字(英)
論文目次 ABSTRACT.............................................i
ACKNOWLEDGEMENTS ....................................iv
TABLE OF CONTENTS....................................v
LIST OF FIGURES......................................vi
LIST OF TABLES...................................... viii
EXPLANATION OF SYMBOLS...............................ix
1 INTRODUCTION.......................................1
1.1 GALLIUM NITRIDE AND THE SUBSTRATE................1
1.2 SILICON SUBSTRATE................................2
1.3 POLARIZATION IN WURTZITE GaN.....................3
1.4 CURRENT STATUS OF GaN-ON-Si GROWTH...............6
1.5 THE ZnO BUFFER...................................8
1.6 MOTIVATION AND THESIS OVERVIEW...................8
2 EXPERIMENTAL PROCEDURE.............................10
2.1 THE PREPARATIONS OF ZnO BUFFER LAYER.............10
2.1.1 POLAR c-PLANE ZnO..............................11
2.1.2 NONPOLAR m-PLANE ZnO...........................13
2.1.2.1 THE HYDROTHERMAL PROCESS.....................19
2.1.2.2 MORPHOLOGICAL AND STRUCTURAL ANALYSES........22
2.2 GaN GROWN ON ZnO/Si..............................29
2.2.1 THE NANOSTRUCTURE..............................32
3 RESULTS............................................34
3.1 GALLIUM NITRIDE GROWN ON POLAR c-PLANE ZnO.......34
3.2 NONPOLAR m-PLANE ZnO.............................46
3.3 SUMMARY..........................................54
4 CONCLUSION.........................................55
5 FUTURE WORK........................................56
6 REFERENCES.........................................58
參考文獻 [1] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation”, Japanese Journal of Applied Physics Volume 28, pp. L2112-L2114, 1989.
[2] Jae Kyeong Jeong, Jung-Hae Choi, Hyun Jin Kim, Hui-Chan Seo et al, “Buffer-layer-free growth of high-quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition”, Journal of Crystal Growth Volume 276, pp. 407-414, 2005.
[3] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. Volume 48, pp. 353, 1986.
[4] Kun-Ta Wu, P.H. Chang, S.T. Lien, N.C. Chen, Ching-An Chang et al, “Growth and characterization of GaN/AlGaN high-electron mobility transistors grown on p-type Si substrates”, Physica E Volume 32, pp. 566–568, 2006.
[5] Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, PHYSICAL REVIEW B Volume 56, pp. 16, 1997.
[6] E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures”, J. Vac. Sci. Technol. B Volume 17, pp. 4, 1999.
[7] T. A. Rawdanowicz and J. Narayan, “Epitaxial GaN on Si(111): Process control of SiNx interlayer formation”, Appl. Phys. Lett. Volume 85, pp. 133, 2004.
[8] Shigefusa F. Chichibu, Akira Uedono, Takeyoshi Onuma, Benjamin A. Haskell et al, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors”, nature materials Volume 5, pp. 810 - 816 , 2006.
[9] F. Semond, P. Lorenzini, N. Grandjean, and J. Massies, “High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy”, Appl. Phys. Lett. Volume 78, pp. 335, 2000.
[10] Eric Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès et al, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. Volume 79, pp. 3230, 2001.
[11] D. Köhl, G. Natarajan and M. Wuttig, “Structure control of sputtered zinc oxide films by utilizing zinc oxide seed layers tailored by ion beam assisted sputtering”, J. Phys. D: Appl. Phys. Volume 45, pp. 245302, 2012.
[12] Y. Sh, Z. Yang, H. Cao, Z. Liu, “Controlled c-oriented ZnO nanorod arrays and m-plane ZnO thin film growth on Si substrate by a hydrothermal method”, Journal of Crystal Growth Volume 312, pp. 568-572, 2010.
[13] T. Ma, M. Guo, M. Zhang, Y. Zhang and X. Wang, “Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays”, Nanotechnology Volume 18, pp. 035605, 2007.
[14] Jaejin Song and Sangwoo Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”, J. Phys. Chem. C Volume 111, pp. 596-600, 2007.
[15] Ye Sun, D. Jason Riley, and Michael N. R. Ashfold, “Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates”, J. Phys. Chem. B Volume 110, pp. 15186-15192, 2006.
[16] Sheng Xu, Changshi Lao, Benjamin Weintraub, and Zhong Lin Wang, “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces”, J. Mater. Res. Volume 23, pp. 8, 2008.
[17] Rinku P. Parikh, Raymond A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, Journal of Crystal Growth Volume 286, pp. 259-278, 2006.
[18] MIYAKE H, MOTOGAITO A, HIRAMATSU K, “Effects of Reactor Pressure on Epitaxial Lateral Overgrowth of GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys, Volume 38, pp. L1000-L1002, 1999.
[19] S. Lew, A. F. Sarofim and M. Flytzani-Stephanopoulos, “The Reduction of Zinc Titanate and Zinc Oxide Solids”, Chemical Engineering Science Volume 47, pp. 1421- 1431, 1992.
[20] Jacob J. Richardson and Frederick F. Lange, “Controlling Low Temperature Aqueous Synthesis of ZnO”, Crystal Growth & Design Volume 9, pp. 2570-2575, 2009.
[21] L.P. Dai, H. Deng, G. Chen, C.F. Tang, M. Wei, Y. Li, “growth of a-b-axis orientation ZnO films with zinc vacancies by SSCVD”, Vacuum Volume 81, pp. 969-973, 2007.
指導教授 賴昆佑 審核日期 2013-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明