博碩士論文 982406004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.146.107.223
姓名 林聖富(Sheng-fu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 建構高敏感免標定波導共振核酸適合體式生物感測器並於生物分析應用之研究
(Development of high sensitivity label-free guided mode resonance aptasensor and its bioanalytical application)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要在於發展一低成本、免標定與高敏感度的波導共振生物感測器。波導共振元件是一種光學的濾波器,它藉由其特殊的次波長波導光柵結構來反射特定的光波。當波導共振元件的邊界條件被改變的時候,如,生物分子附著於結構表面,結果會造成其共振波長的偏移。本研究藉由此特性將波導共振元件做為一個體外的生物感測器,用以檢測生物分子。本文內容包括:此共振元件的敏感度與結構關係之理論探討、一個高敏感度的型變波導共振結構(金屬輔助波導共振)與建立其相對應的檢測平台,並實際展示此系統於生物分子檢測應用的效能。在實驗部分,我們發展出一套適用於製作低成本高均勻性波導共振元件的奈米壓印技術與一個對凝血酶具有專一性結合能力的核酸適合體式波導共振晶片並具有抗汙的能力。最後,本文亦建立適用於金屬輔助波導共振元件的波長解析檢測平台與適用於一般波導共振的光強解析的檢測平台。
於敏感度理論分析中,我們提出一個簡化的波導模型來預測表面淺蝕刻式波導共振生物感測器的敏感度。這個簡化的模型相對於現有常見的模擬方法,如:嚴格耦合波理論或是有限時域差分法來說,是個便利且快速的計算方法,並且可以更加深入探討共振機制。所以本研究藉由此提出的模型,有系統的分析與探討波導共振元件之結構與其對應敏感度關係。其中,我們亦將此模型之預測結果與嚴格耦合波理論的計算結果相互比較,我們發現,此簡化模型所提出的預測結果與嚴格耦合波的結果具有高度的吻合性。
在高敏感型變波導共振的單元中,為了使波導共振感測器更能接近一般生醫檢測應用的範疇,我們提出高敏感度金屬輔助波導共振的結構,根據實驗結果,其敏感度相較於傳統波導共振結構提升一倍。其中,金屬輔助波導共振元件的反射光譜展現出一個特殊的反轉型光譜,這個共振的機制亦在本單元討論。另一方面,由數值模擬結果可知,此元件之高敏感度來自於其強烈的非對稱共振場分布型態與波導內的低傳播角共振。數值計算結果顯示,在藉由此方法,晶片表面的消逝波強度被增強了一倍,進而達到提升感測器之靈敏度。此外,本研究中亦開發奈米壓印方法並應用於晶片製造,用以達到低成本的高均勻性晶片。經模擬與實驗證實,壓印型金屬波導共振元件可再次明增加感測器之靈敏度。
接著,本研究分別建立適用於金屬輔助波導共振與波導共振之檢測平台,其分別屬於光譜解析與光強解析的架構。在光譜解析的設置中,我們使用低輸出(éntendue)設置法,此法大幅減小建構系統與實驗量測的困難度。此外,此設置法也減少因為基板所造成的干涉條紋。在另一方面,在強度解析的設置中,透過調制通過波導共振元件的偏振光,將特徵橢圓偏振轉換成線性偏振,接著使用檢偏器遮蔽,最後可得到近乎全暗的背景訊號,使任何的折射率變化皆會造成光強增加,而達到檢測的目的。
最後呈現的是一個以核酸適合體為固定化分子的免標定、即時檢測之金屬輔助波導共振生物感測器。實驗中,兩條不同序列的抗凝血酶核酸適合體被固定於金屬輔助波導共振晶片的表面,用以作為生物辨識分子而進行凝血酶之檢測。其中此檢測器亦通過非專一性的抗污測試。於凝血酶之檢測中,本感測器使用15與29鹼基抗凝血酶核酸適合體檢測凝血酶分別可達到0.55與0.44 nm/μM的靈敏度,其檢測極限分別為190與230 nM。
摘要(英) The guided mode resonance (GMR) device is developed to be a low-cost, label-free and high sensitivity biosensor. Typically, the GMR is an optical filter which reflects a specific light wave according to its sub-wavelength waveguide grating structures. As biomolecules attach on GMR surface, it changes the boundary conditions of GMR and results in a shift of characteristic spectrum. This presented work includes the theoretical study of GMR sensitivity for biosensing, a mutated high sensitive GMR structure (metal-assisted guided mode resonance, MaGMR), constructions of the related sensing platform and in vitro bioanalytical application. In experimental part, a nano-imprint method is developed for low-cost and high uniformity chip processes. A surface modification for antifouling and aptamer immobilized chip which specific binds to thrombin is also demonstrated. Finally, spectrum-resolved and intensity-resolved sensor platforms based on MaGMR and GMR are individually demonstrated.
In theoretical study of the GMR sensitivity, a simplified waveguide model for predicting the sensitivity of surface-relief GMR biosensors is presented. The proposed model is a convenient and rapid calculation method compared to those current optical simulation tools such as the rigorous couple wave analysis (RCWA) or finite-difference time domain (FDTD). Thus, by using this proposed model, a systematic and theoretical discussion on the GMR geometric structure and its sensitivity is also presented. Calculations of sensitivity between the proposed model and the RCWA method show a good agreement.
For the high sensitive mutation type of GMR section, a novel metal layer assisted guide mode resonance (MaGMR) device is proposed for bioanalytical applications and its performances are experimentally proved. Compare to the typical GMR, the sensitivity is one fold enhanced. We find the reflection spectra show a unique inversed response and the resonance mechanism is discussed as well. Numerical calculation results indicate that the high sensitivity performance of MaGMR comes from the strongly asymmetric resonance modal profile and low propagation angle inside the waveguide. There is a one-fold enhancement of the evanescent wave in the analytes region compared to typical GMR. In addition, a nano-imprint method for high uniformity and low cost MaGMR chip is developed. Furthermore, the surface to bulk sensitivity is also enhanced through the nano-imprint method.
In construction of sensing platforms, two sensing systems for MaGMR and GMR are individually demonstrated. One is a spectrum-resolved method for MaGMR sensors, and the other is a polarization-control setup for intensity-resolved GMR sensors. The spectrum-resolved system is performed under a low éntendue design which makes the measurement much easier and totally reduces the spectrum fringe noises from substrate. On the other hand, the intensity-resolved setup transfers polarization ellipses into linear polarization state and then suppresses the signals to a dark signal by an analyzer. Hence, any changes in the refractive index results in an increase in the intensity signals.
Finally, an aptamer based MaGMR sensor (aptasensor) for label-free and real-time detection is demonstrated. Two strains of thrombin binding aptamer (TBA) are immobilized on the surface of MaGMR chips as a recognizing ligand for thrombin. The MaGMR aptasensors also passed the nonspecific antifouling tests. The sensitivity of 15 and 29-mer TBA MaGMR aptasensor is 0.55 and 0.44 nm/μM and the limit of detection (LOD) is achieved 190 and 230 nM, respectively.
關鍵字(中) ★ 波導共振
★ 生物感測器
★ 金屬
★ 核酸適合體
關鍵字(英) ★ Guided mode resonance
★ Biosensor
★ Metal
★ Aptamer
論文目次 中文摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XIII
I. INTRODUCTION 1
I- 1 FUNDAMENTALS OF GUIDED MODE RESONANCE 2
I- 2 GMR BASED SENSORS 2
I- 3 MOTIVATION AND ARRANGEMENT OF THESIS 5
II. THEORY AND NUMERICAL METHOD 7
II- 1 GUIDED MODE RESONANCE 7
II- 2 RIGOROUS COUPLED-WAVE ANALYSIS 16
II- 3 FINITE-DIFFERENCE TIME-DOMAIN 18
III. SIMPLIFIED MODEL FOR CALCULATING GMR PHENOMENON 22
III- 1 THE CONCEPT 22
III- 2 GMR ON A SUBSTRATE 24
III- 2.a The resonance, sensitivity and geometric conditions 24
III- 2.b Compare to the RCWA 28
III- 3 IMPROVEMENT OF THE SENSITIVITY- SUSPENDING GMR 30
IV. METAL-ASSISTED GUIDED MODE RESONANCE 32
IV- 1 THE CONCEPT 33
IV- 2 PHYSICS OF THE MAGMR 34
IV- 2.a Resonance mechanism 34
IV- 2.b Sensitivity 42
IV- 2.c Experimental results 43
IV- 3 NANO-IMPRINT TYPE MAGMR 45
IV- 3.a Optimization 45
IV- 3.b Chip processes 52
IV- 3.c Experimental results 54
V. POLARIZATION CONTROLLED GMR SYSTEM 57
V- 1 THE CONCEPT 57
V- 2 EXPERIMENTAL RESULTS 60
VI. DEMONSTRATION ON BIOANALYTICAL APPLICATION- APTASENSOR 63
VI- 1 THE MULTI-CHANNEL DETECTION SYSTEM 63
VI- 2 MAGMR APTASENSOR FOR THROMBIN DETECTION 68
VI- 2.a Method 69
VI- 2.b Experimental results 70
VII. CONCLUSIONS 75
VIII. REFERENCES 77
IX. OPTICAL CONSTANTS 86
X. PUBLICATION LIST 87
參考文獻 1. M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, "Strategies for the early diagnosis of acute myocardial infarction using biochemical markers," Am. J. Clin. Pathol. 111, 399-405 (1999).
2. L. Babuin and A. S. Jaffe, "Troponin: the biomarker of choice for the detection of cardiac injury," Can. Med. Assoc. J. 173, 1191-1202 (2005).
3. M. Esteller and J. G. Herman, "Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours," J. Pathol. 196, 1-7 (2002).
4. A. Ahmad, A. Ramakrishnan, M. A. McLean, D. B. Li, M. T. Rock, A. Karim, and A. P. Breau, "Use of optical biosensor technology to study immunological cross-reactivity between different sulfonamide drugs," Anal. Biochem. 300, 177-184 (2002).
5. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
6. E. Wilkins, D. Ivnitski, I. Abdel-Hamid, and P. Atanasov, "Biosensors for detection of pathogenic bacteria," Biosens. Bioelectron. 14, 599-624 (1999).
7. H. M. Haake, A. Schutz, and G. Gauglitz, "Label-free detection of biomolecular interaction by optical sensors," Fresenius J. Anal. Chem. 366, 576-585 (2000).
8. M. A. Cooper, "Label-free screening of bio-molecular interactions," Anal. Bioanal. Chem. 377, 834-842 (2003).
9. C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugniere, "Antibody-antigenic peptide interactions monitored by SPR and QCM-D - A model for SPR detection of IA-2 autoantibodies in human serum," Biosens. Bioelectron. 22, 3113-3119 (2007).
10. M. A. Cooper and V. T. Singleton, "A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions," J. Mol. Recognit. 20, 154-184 (2007).
11. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature 445, 519-522 (2007).
12. S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, "Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett. 92(2008).
13. C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosens. Bioelectron. 24, 1223-1229 (2009).
14. F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, "A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples," Biosens. Bioelectron. 26, 1231-1238 (2010).
15. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, "Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves," Opt. Express 19, 24530-24539 (2011).
16. W. D. Wilson and T. M. Davis, "Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data," Anal. Biochem. 284, 348-353 (2000).
17. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, "Refractometric Sensing Using Propagating versus Localized Surface Plasmons: A Direct Comparison," Nano Lett. 9, 4428-4433 (2009).
18. K. Hasegawa, K. Ono, M. Yamada, and H. Naiki, "Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance," Biochemistry 41, 13489-13498 (2002).
19. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. N. Conti, and J. S. Wilkinson, "Whispering gallery mode spectra of channel waveguide coupled microspheres," Opt. Express 16, 11066-11076 (2008).
20. A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators, B 123, 727-732 (2007).
21. S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, "A Guided Mode Resonance Aptasensor for Thrombin Detection," Sensors-Basel 11, 8953-8965 (2011).
22. M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, "Sensitivity enhancement in photonic crystal slab biosensors," Opt. Express 18, 22702-22714 (2010).
23. C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, "Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants," IEEE Sens. J. 9, 1697-1704 (2009).
24. I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators, B 120, 187-193 (2006).
25. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," J. Biomol. Screening 9, 481-490 (2004).
26. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, "Agarose-Gel Based Guided-Mode Resonance Humidity Sensor," IEEE Sens. J. 7, 409-414 (2007).
27. S. Foland, K.-H. Choi, and J.-B. Lee, "Pressure-tunable guided-mode resonance sensor for single-wavelength characterization," Opt. Lett. 35, 3871-3873 (2010).
28. S. Foland, B. Swedlove, N. Hoang, and L. Dong-Weon, "One-Dimensional Nanograting-Based Guided-Mode Resonance Pressure Sensor," J. Microelectromech. Syst. 21, 1117-1123 (2012).
29. Y. Nazirizadeh, T. Karrock, and M. Gerken, "Visual device for pressure measurement using photonic crystal slabs," Opt. Lett. 37, 3081-3083 (2012).
30. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators, B 85, 219-226 (2002).
31. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, "Resonant Waveguide Grating Biosensor for Living Cell Sensing," Biophys. J. 91, 1925-1940 (2006).
32. A. M. Ferrie, Q. Wu, and Y. Fang, "Resonant waveguide grating imager for live cell sensing," Appl. Phys. Lett. 97, 223704-223703 (2010).
33. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, "Optical grating coupler biosensors," Biomaterials 23, 3699-3710 (2002).
34. J. Vörös, R. Graf, G. L. Kenausis, A. Bruinink, J. Mayer, M. Textor, E. Wintermantel, and N. D. Spencer, "Feasibility study of an online toxicological sensor based on the optical waveguide technique," Biosens. Bioelectron. 15, 423-429 (2000).
35. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, "Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers," Opt. Express 18, 19120-19128 (2010).
36. Y. Nazirizadeh, F. von Oertzen, K. Plewa, N. Barié, P.-J. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, "Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications," Opt. Mater. Express 3, 556-565 (2013).
37. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, "Optical fiber endface biosensor based on resonances in dielectric waveguide gratings," in Proc. SPIE 3911, 86-94 (2000).
38. H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, "Refractive index sensor with a guided-mode resonant grating filter," in Proc. SPIE 4416, 219-222 (2001).
39. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, "Sensitivity model for predicting photonic crystal biosensor performance," IEEE Sens. J. 8, 274-280 (2008).
40. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, "High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area," Sens. Actuators, B 131, 279-284 (2008).
41. B. Cunningham, J. Qiu, P. Li, and B. Lin, "Enhancing the surface sensitivity of colorimetric resonant optical biosensors," Sens. Actuators, B 87, 365-370 (2002).
42. S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, "Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution," Opt. Express 20, 14584-14595 (2012).
43. P. Y. Li, L. Bo, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators, B 99, 6-13 (2004).
44. W. J. Kim, B. K. Kim, A. Kim, C. Huh, C. S. Ah, K. H. Kim, J. Hong, S. H. Park, S. Song, J. Song, and G. Y. Sung, "Response to Cardiac Markers in Human Serum Analyzed by Guided-Mode Resonance Biosensor," Anal. Chem. 82, 9686-9693 (2010).
45. P. B. Luppa, L. J. Sokoll, and D. W. Chan, "Immunosensors - principles and applications to clinical chemistry," Clin. Chim. Acta 314, 1-26 (2001).
46. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
47. D. X. Xu, A. Densmore, A. Delage, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008).
48. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal.Chem. 377, 528-539 (2003).
49. R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," in Proc. Phys. Soc. London 18, 269 (1902).
50. A. Hessel and A. A. Oliner, "A New Theory of Wood?s Anomalies on Optical Gratings," Appl. Opt. 4, 1275-1297 (1965).
51. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A: 7, 1470-1474 (1990).
52. L. Davoine, M. Schnieper, A. Barranco, and F. J. Aparicio, "Visual gas sensors based on dye thin films and resonant waveguide gratings," in Proc. SPIE 8073 ,807312-807317 (2011).
53. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, "A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation," Colloids Surf., B 24, 155-170 (2002).
54 N. Ganesh, I. D. Block, and B. T. Cunningham, "Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio," Appl. Phys. Lett. 89 (2006).
55. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
56. Y. Kane, "Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
57. L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, "Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry," Opt. Express 16, 17962-17971 (2008).
58. J. Hong, K. H. Kim, J. H. Shin, C. Huh, and G. Y. Sung, "Prediction of the limit of detection of an optical resonant reflection biosensor," Opt. Express 15, 8972-8978 (2007).
59. E. Hecht, Optics, 4th ed. (Pearson, 2003), p. 113.
60. C. L. Hsu, Y. C. Liu, C. M. Wang, M. L. Wu, Y. L. Tsai, Y. H. Chou, C. C. Lee, and J. Y. Chang, "Bulk-micromachined optical filter based on guided-mode resonance in silicon-nitride membrane," J. Lightwave Technol. 24, 1922-1928 (2006).
61. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, "A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors," Sens. Actuators, B 176, 1197-1203 (2013).
62. D. W. Lynch and W. R. Hunter, Gold (Au), Handbook of Optical Constants of Solids (Academic, 1985).
63. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004).
64. R. Magnusson and T. K. Gaylord, "Diffraction efficiencies of thin phase gratings with arbitrary grating space," J. Opt. Soc. Am. 68, 806 (1978).
65. N. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid. Nanofluid. 4, 117-127 (2008).
66. D. J. Segelstein, "The complex refractive index of water," (University of Missouri, Kansas City, 1981).
67. Y. Fang, A. M. Ferrie, and G. S. Li, "Probing cytoskeleton modulation by optical biosensors," FEBS Lett. 579, 4175-4180 (2005).
68. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008).
69. Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, J. B. Chen, Y. W. Zhong, and S. L. Zhuang, "Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal," Opt. Lett. 35, 1236-1238 (2010).
70. R. C. Jones, "A New Calculus for the Treatment of Optical Systems," J. Opt. Soc. Am. 31, 488-493 (1941).
71. E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, "Characterization of a wavelength-tunable surface plasmon resonance microscope," Rev. Sci. Instrum. 75, 2300-2304 (2004).
72. C. T. Campbell and G. Kim, "SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics," Biomaterials 28, 2380-2392 (2007).
73. L. Chen, C. C. Bao, H. Yang, D. Li, C. Lei, T. Wang, H. Y. Hu, M. He, Y. Zhou, and D. X. Cui, "A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells," Biosens. Bioelectron. 26, 3246-3253 (2011).
74. H. Yang, L. Chen, C. Lei, J. Zhang, D. Li, Z. M. Zhou, C. C. Bao, H. Y. Hu, X. A. Chen, F. Cui, S. X. Zhang, Y. Zhou, and D. X. Cui, "Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18," Appl. Phys. Lett. 97(2010).
75. S. C. B. Gopinath, "Anti-coagulant aptamers," Thromb. Res. 122, 838-847 (2008).
76. Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P. Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, and C. Gerber, "Label-free protein assay based on a nanomechanical cantilever array," Nanotechnol. 14, 86-90 (2003).
77. P. S. Petrou, D. Ricklin, M. Zavali, I. Raptis, S. E. Kakabakos, K. Misiakos, and J. D. Lambris, "Real-time label-free detection of complement activation products in human serum by white light reflectance spectroscopy," Biosens. Bioelectron. 24, 3359-3364 (2009).
78. C. F. Ding, Y. Ge, and J. M. Lin, "Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles," Biosens. Bioelectron. 25, 1290-1294 (2010).
79. H. Cai, T. M. H. Lee, and I. M. Hsing, "Label-free protein recognition using an aptamer-based impedance measurement assay," Sens. Actuators, B 114, 433-437 (2006).
80. J. A. Lee, S. Hwang, J. Kwak, S. Il Park, S. S. Lee, and K. C. Lee, "An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection," Sens. Actuators, B 129, 372-379 (2008).
81. A. Higuchi, Y. D. Siao, S. T. Yang, P. V. Hsieh, H. Fukushima, Y. Chang, R. C. Ruaan, and W. Y. Chen, "Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies," Anal. Chem. 80, 6580-6586 (2008).
82. Y. L. Wang, D. Li, W. Ren, Z. J. Liu, S. J. Dong, and E. K. Wang, "Ultrasensitive colorimetric detection of protein by aptamer - Au nanoparticles conjugates based on a dot-blot assay," Chem. Commun., 2520-2522 (2008).
83. Z. X. Zhang, Z. J. Wang, X. L. Wang, and X. R. Yang, "Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin," Sens. Actuators, B 147, 428-433 (2010).
84. W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, "Aptamer biosensor for protein detection based on guanine-quenching," Sens. Actuators, B 129, 211-217 (2008).
85. T. Hianik, V. Ostatna, Z. Zajacova, E. Stoikova, and G. Evtugyn, "Detection of aptamer-protein interactions using QCM and electrochemical indicator methods," Bioorg. Med. Chem. Lett. 15, 291-295 (2005).
86. A. Jung, T. M. A. Gronewold, M. Tewes, E. Quandt, and P. Berlin, "Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system," Sens. Actuators, B 124, 46-52 (2007).
87. M. D. Schlensog, T. M. A. Gronewold, M. Tewes, M. Famulok, and E. Quandt, "A Love-wave biosensor using nucleic acids as ligands," Sens. Actuators, B 101, 308-315 (2004).
88. W. Liao, F. Wei, D. Liu, M. X. Qian, G. Yuan, and X. S. Zhao, "FTIR-ATR detection of proteins and small molecules through DNA conjugation," Sens. Actuators, B 114, 445-450 (2006).
89. H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors-Basel 6, 785-795 (2006).
90. A. D. Ellington and J. W. Szostak, "Invitro Selection of Rna Molecules That Bind Specific Ligands," Nature 346, 818-822 (1990).
91. D. L. Robertson and G. F. Joyce, "Selection Invitro of an Rna Enzyme That Specifically Cleaves Single-Stranded-DNA," Nature 344, 467-468 (1990).
92. C. Tuerk and L. Gold, "Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase," Science 249, 505-510 (1990).
93. R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, "High-Resolution Molecular Discrimination by Rna," Science 263, 1425-1429 (1994).
94. S. Tombelli, A. Minunni, and A. Mascini, "Analytical applications of aptamers," Biosens. Bioelectron. 20, 2424-2434 (2005).
95. K. Maehashi and K. Matsumoto, "Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors," Sensors-Basel 9, 5368-5378 (2009).
96. T. C. Chiu and C. C. Huang, "Aptamer-Functionalized Nano-Biosensors," Sensors-Basel 9, 10356-10388 (2009).
97. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, "Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin," Nature 355, 564-566 (1992).
98. D. M. Tasset, M. F. Kubik, and W. Steiner, "Oligonucleotide inhibitors of human thrombin that bind distinct epitopes," J. Mol. Biol. 272, 688-698 (1997).
99. M. Tsiang, A. K. Jain, K. E. Dunn, M. E. Rojas, L. L. K. Leung, and C. S. Gibbs, "Functional Mapping of the Surface Residues of Human Thrombin," J. Biol. Chem. 270, 16854-16863 (1995).
指導教授 張正陽(Jenq-yang Chang) 審核日期 2013-11-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明