參考文獻 |
參考文獻
第一章
[1.1] R. W. Wood “On a Remarkable Case of Uneven Distribution of Light in Diffraction Grating Spectrum,” Proc. Phys. Soc. London 18, 269-275 (1902).
[1.2] L. Rayleigh “On the Dynamic Theory of Gratings,” Proc. R. Soc. London Ser. A 79, 399–416 (1907).
[1.3] L. Rayleigh “Note on the Remarkable Case of Diffraction Spectra Described by Prof. Wood,” Phil. Mag. 14, 60-65 (1907).
[1.4] W. L. Bragg “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proceedings of the Cambridge Philosophical Society 17, 47-57 (1913).
[1.5] R. W. Wood “Diffraction Gratings with Controlled Groove form and Abnormal Distribution of Intensity,” Phil. Mag. 23, 310-317, (1912).
[1.6] R. W. Wood “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928-936, (1935).
[1.7] J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. der Physik, 23, 846–866 (1907).
[1.8] A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie", Annalen der Physik,” 28, 665-736, 1909.
[1.9] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 32, 213-222 (1941).
[1.10] D. Pine and D. Bohm, “A Collective Description of Electron Interactions:Ⅱ Collective vs Individual Particle Aspects of the Interactions,” Phys. Rev. 85, 338-353 (1952).
[1.11] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[1.12] C. J. Powell and J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Aluminum,” Phys. Rev. 115, 869-875 (1959).
[1.13] T. Turbadar, “Complete Absorption of Light by Thin Metal Films,” Proc. Phys. Soc. 73, 40-44 (1959).
[1.14] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[1.15] E. Kretschmann and H. Raether, “Radiative Decay of Non-Radiative Surface Plasmons Excited by Light,” Z. Phys. 239, 2135-2136 (1968).
[1.16] E. Kretschmann, “Decay of Non Radiative Surface Plasmons into Light on Rough Silver Films. Comparison of Experimental and Theoretical Results,” Optics Communications 6, 185-187 (1972).
[1.17] R.P.H. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface Plasmon Resonance Immunosensors: Sensitivity Considerations,” Anal. Chim. Acta. 213, 35-45 (1988).
[1.18] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and Biosensing,” Sensors and Actuators 4, 299-304 (1983).
[1.19]R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission from GaAs Junctions,” Phys. Rev. 1, 366-368 (1962).
[1.20] K. C. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEE 113, 1151-1158 (1966).
[1.21] E. Ruska and M. Knoll, “Die Magnetische Sammelspule für Schnelle Elektronenstrahlen,” Z. Tech. Physik. 12, 389–400 (1931).
[1.22] M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal Waveguide Dimensions Nonlinear Interactions,” Opt. Express 12, 2880–2887 (2004).
[1.23] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83 - 91 (2010).
[1.24] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Groove,” Phys. Rev. Lett. 95, 046802 (2005).
[1.25] F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. GonzÁlez, J. C. Webber, and A. Dereux, “Efficient Unidirectional Nanoslit Coupler for Surface Plasmons,” Nat. Phys. 3, 324-328 (2007).
[1.26] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective Polarizer Based on a Stacked Double-Layer Subwavelength Metal Grating Structure Fabricated using Nanoimprint Lithograpy,” Appl. Phys. Lett. 77, 927-929 (2000).
[1.27] A. V. Zayats, W. Dickson, I. I. Smolyaninov, and C. C. Davis, “Polarization Superprism Effect in Surface Polaritonic Crystals,” Appl. Phys. Lett. 82, 4438-4440 (2003).
[1.28] C.-Y. Tai, W.-H. Yu, and S. H. Chang, “Giant Angular Dispersion Mediated by Plasmonic Modal Competition,” Opt. Express 24, 24510-24515 (2010).
[1.29] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel Plasmon Subwavelength Waveguide Components Including Interferometers and Ring Resonators,” Nature 440, 508-511 (2006).
[1.30] M. U. González, J.-C. Webber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, and E. Devaux, and T. W. Ebbesen, “Design, Near-Field Characterization, and Modeling of 45o Surface-Plasmon Bragg Mirrors,” Phys. Rev. B 73, 155416 (2006).
[1.31] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Integrated Optics Elements Based on Long-Ranging Surface Plasmon Polaritons,” Opt. Express 13, 977-984 (2005).
[1.32] W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot Coupler with a Surface Plasmon Polariton Condenser for Optical Far/Near-Field Conversion,” Appl. Phys. Lett 86, 181108 (2005).
[1.33] T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-Plasmon Circuitry,” Phys. Today 61, 44-50 (2008).
[1.34] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon Lasers at Deep Subwavelength Scale,” Nature 461, 629-632 (2009).
[1.35] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a Spaser-Based Nanolaser,” Nature 460, 1110-1112 (2009).
[1.36] F. J. Garcia-Vidal and E. Moreno, “Laser Go Nano,” Nature 461, 604-605 (2009).
[1.37] N. Del Fatti, R. Bouffanais, F. Vallée, and C. Flytzanis, “Nonequilibrium Electron Interaction in Metal Films,” Phys. Rev. Lett. 81, 922-925 (1998).
[1.38] M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic Crystals for Ultrafast Nanophotonics: Optical Switching of Surface Plasmon Polaritons,” Phys. Rev. Lett. 85, 081401 (2012).
[1.39] V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward Integrated Plasmonic Circuits,” MRS Bull. 37, 728-738 (2012).
[1.40] R. P. Van Duyne, “Molecular Plasmonics,” Science. 306, 985-986 (2004).
[1.41] C. V. Lavers and J. S. Wilkinson, “A Waveguide-Coupled Surface-Plasmon Sensor for an Aqueous Environment,” Sen. Actu. B 22, 75-81 (1994).
[1.42] J. Homola, “Optical Fiber Sensor Based on Surface Plasmon Excitation,” Sen. Actu. B 29, 401-405 (1995).
[1.43] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor Based on an Integrated Optical Microcavity,” Opt. Lett. 27, 512-514 (2002).
[1.44] A. Michelson and E. Morley, “On the Relative Motion of the Earth and the Luminiferous Ether,” Amer. J. Sci. 34, 333–345 (1887).
[1.45] Y. Gao, Q. Gan, Z, Xin, X, Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” Acs Nano 5, 9836-9844 (2011).
[1.46] A. M. Armani, R. P. Kulkarni, S. E. Fraser, and K. J. Vahala, “Label-Free Single Molecule Detection with Optical Microcavities,” Science 317, 783-787 (2007).
[1.47] O. Folin and H. Wu, “A System of Blood Analysis: Supplement I. A Simplified and Improved Method for Determination of Sugar,” J. Biol. Chem. 41, 367-374 (1920).
[1.48] H. V. Hsieh, Z. A. Pfeiffer, T. J. Amiss, D. B. Sherman, J. B. Pitner, “Direct Detection of Glucose by Surface Plasmon Resonance with Bacterial Glucose/Galactose-Binding Protein,” Biosens. Bioelectron. 19, 653-660 (2004).
[1.49] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
[1.50] S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275, 1102-1106 (1997).
[1.51] T. Plakhotnik, E. A. Donley, and U. P. Wild, “Single-Molecule Spectroscopy,” Annu. Rev. Phys. Chem. 48, 181-212 (1997).
[1.52] P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical Detection of Single Non-Absorbing Molecules using the Surface Plasmon Resonance of a Gold Nanorod,” Nature Nanotech. 7, 379-382 (2012).
[1.53] M. Käll, “One Molecule at a Time,” Nature Nanotech. 7, 347-349 (2012).
[1.54] I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles,” Nano Lett. 12, 1092-1095 (2012).
[1.55] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate,” Nano Lett. 6, 2630-2636 (2006).
[1.56] G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-Munoz, N. E. Shepardson, I. Smith, F. M. Brett, M. A. Farrell, M. J. Rowan, C. A. Lemere, C. M. Regan, D. M. Walsh, B. L. Sabatini, and D. J. Selkoe, “Amyloid-β Protein Dimers Isolated Directly from Alzheimer’s Brains Impair Synaptic Plasticity and Memory,” Nature Medicine 14, 837-842 (2008).
[1.57] M. E. Bruce, “New Variant Creutzfeldt-Jakob Disease and Bovine Spongiform Encephalopathy,” Nature Medicine 6, 258-259 (2000).
[1.58] B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles,” Nano Lett. 5, 2246-2252 (2005).
[1.59] Y. S. Chen, M. Y. Hong, and G. S. Huang, “A Protein Transistor Made of an Antibody Molecule and Two Gold Nanoparticles,” Nature Nanotech. 7, 197-203 (2012).
[1.60] B. Lounis and W. E. Moerner, “Single Photons on Demand from a Single Molecule at room Temperature,” Nature 427, 491-493 (2000).
[1.61] S. C. Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Organic Electronics 4, 123-130 (2003).
[1.62] S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-Examining the Origins of Spectral Blinking in Single-Molecule and Single-Nanoparticle SERS,” Faraday Discussions 132, 249-259 (2006).
[1.63] A. M. Michaels, J. Jiang, and L. Brus, “Ag Nanocrystal Junction as the Site for Surface Enhanced Raman Scattering of Single Rhodamine 6G Molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
[1.64] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance,” PANS 100, 13549-13554 (2003).
[1.65] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929-1934 (2007).
[1.66] K. M. Hilligsøe, T. V. Anderson, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum Generaton in a Photonic Crystal Fiber with Two Zero Dispersion Wavelengths,” Opt. Express 12, 1045-1054 (2004).
[1.67] Y. Wang, X. Liu, D. Whitmore, W. Xing, and E. O. Potma, “Remote Multi-Color Excitation using Femtosecond Propagating Surface Plasmon Polaritons in Gold Films,” Opt. Express 19, 13454-13463 (2011).
第二章
[2.1] M. A. Ordal, R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, “Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Applied Optics 24, 4493-4499 (1985).
[2.2] P. Berini, “Long-Range Surface Plasmon Polaritons,” Advances in Optics and Photonics 1, 484-588 (2009).
[2.3] D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[2.4] D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal Films (Erratum),” Phys. Rev. Lett. 48, p. 446 (1982).
[2.5] A. E. Craig, G. A. Olson, and D. Sarid, “Experimental Observation of Long-Range Surface Plasmon-Polaritons,” Opt. Lett. 8, 380-382 (1983).
[2.6] P. Berini, “Plasmon-Polariton Modes Guided by a Metal Film of Finite Width,” Opt. Lett. 24, 1011-1013 (1999).
[2.7] J.-C. Webber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon Polaritons of Metallic Nanowires for Controlling Submicron Propagation of Light,” Phys. Rev. B 60, 9061-9068 (1999).
[2.8] P. Berini, “Air Gaps in Metal Stripe Waveguides Supporting Long-Range Surface Plasmon-Polaritons,” J. Appl. Phys. 102, 033112 (2007).
[2.9] Y. Satuby and M. Orenstein, “Surface-Plasmon-Polariton Modes in Deep Metallic Trenches-Measurement and Analysis,” Opt. Express 15, 4247-4252 (2007).
[2.10] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299, 682-686 (2003).
[2.11] F. Yang, J. R. Sambles, and G. W. Bradberry, “Prism Coupling to Long-Range Coupled-Surface Modes,” J. Mod. Opt. 38, 707-717 (1991).
[2.12] G. P. Bryan-Brown, F. Yang, G. W. Bradberry, and J. R. Sambles, “Prism and Grating Coupling to Long-Range Coupled-Surface Exciton-Polaritons,” J. Mod. Opt. 38, 707-717 (1991).
[2.13] Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, and J. M. Ballantyne, “Surface Plasmons on Gratings: Coupling in the Minigap Regions,” Solid State Communications 46, 95-99 (1983).
[2.14] F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling Between Long Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode,” Appl. Phys. Lett. 90, 141101 (2007).
[2.15] R. Charbonneau, C. Scales, I. Breuklaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 24, 477-494 (2006).
[2.16] G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Annalen der Physik 330, 377–445 (1908).
[2.17] E. Hao and G. C. Schatz “Electromagnetic Fields around Silver Nanoparticles and Dimers,” J. Chem. Phys. 120, 357–366 (2004).
[2.18] W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic Nanorod Absorbers as Orientation Sensors,” PANS 107, 2781–2786 (2010).
[2.19] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4, 899–903 (2004).
[2.20] L. Chuntonov, and G. Haran, “Trimeric Plasmonic Molecules: The Role of Symmetry,” Nano Lett. 11, 2440–2445 (2011).
[2.21] K. H. Su, Q. H. Wei, and X. Zhang “Tunable and Augmented Plasmon Resonance of Au/SiO2/Au Nanodisks,” Appl. Phys. Lett. 88, 063118 (2006).
[2.22] M. Maillard, P. Huang, and L. Brus, “Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+],” Nano Lett. 3, 1611–1615 (2003).
[2.23] F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, and K. W. Plaxco “Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes,” PNAS 107, 10837–10841 (2010).
第三章
[3.1] A. Taflove, “Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady State Electromagnetic Penetration Problems,” IEEE Trans. Electromag. Compat 22, 191-202 (1980).
[3.2] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation in Isotropic Media,” IEEE Trans. Attenna. Propaga. 14, 302-307 (1966).
[3.3] J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics 114 185–200 (1994).
[3.4] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House 2005).
[3.5] W. C. Chew and W. H. Weedon “An Efficient PML Implementation for the ADI-FDTD Method,” Microw. Opt. Tech. Lett. 7 599–604 (1994).
[3.6] S. Wang and F. L. Teixeira, “A 3D Perfectly Matched Medium from Modified Maxwell’s Equations with Stretched Coordinates,” IEEE Micro. Wire. Components Lett 14, 248-249 (2000).
[3.7] M. Kuzuoglu and R. Mittra, “Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers,” IEEE Microwaves Guided Wave Lett 6, 447-449 (1996).
[3.8] J. A. Roden and S. D. Gedney “Convolution PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Tech. Lett. 27, 334–339 (2000).
[3.9] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider “A Frequency-Dependent Finite-Difference Time Domain Formulation for Dispersive Materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[3.10] G. X. Fan and Q. H. Liu, “A FDTD Algorithm with Perfectly Matched Layers for General Dispersive Media,” ,” IEEE Trans. Attenna. Propaga. 48, 637-646 (2000).
[3.11] G. X. Fan, Q. H. Liu, and S. A. Hutchinson, “FDTD and PSTD simulations for plasma applications,” IEEE Trans. Plasma Sci. 29, 341-348 (2001).
[3.12] Q. H. Liu, “An FDTD Algorithm with Perfectly Matched Layers for Conductive Media,” Microw. Opt. Tech. Lett. 14, 134–137 (1997).
[3.13] A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics 37, 5271–5283 (1998).
[3.14] D. E. Mcrewether, R. Fisher, and F. W. Smith, “On Implementing a Numeric Huygen’s Source Scheme in a Finite-Difference Program to Illuminate Scattering Bodies,” IEEE Trans. Nuclear Science, 27, 1829–1833 (1980).
[3.15] K. R. Umashankar and A. Taflove, “A Novel Method to Analyze Electromagnetic Scattering of Complex Objects” IEEE Trans. Electromagn. Compat., 24, 397–405 (1982).
[3.16] J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference Method” Journal of Financial and Quantitative Analysis 25, 87–100 (1990).
[3.17] G. Baffou, R. Quidant, and C. Girard, “Mapping Generation in Plasmonic Nanostructures: Influence of Morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[3.18] L. Gamet, F. Ducros, F. Nicoud, and T. Poinsot, “Compact Finite Difference Schemes on Non-Uniform Meshes. Application to Direct Numerical Simulation of Compressible Flows” Int. J. Numer. Fluids 29: 159–191 (1999).
[3.19] G. Baffou, R. Quidant, and F. J. G. de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709-716 (2010).
[3.20] G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
第四章
[4.1] J. R. Marciante and D. H. Raguin, “High Efficiency, High Dispersion Diffraction Gratings Based on Total Internal Reflection,” Opt. Lett. 29, 542-544 (2004).
[4.2] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism Phenomena in Photonic Crystals,” Phys. Rev. B 58, R10096 (1998).
[4.3] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits,” J. Lightwave Technol. 17, 2032-2039 (1999).
[4.4] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430-432 (2007).
[4.5] I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-Clad Optical Waveguides: Analytical and Experimental Study,” Appl. Opt. 13, 396–405 (1974).
[4.6] A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).
[4.7] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q Toroidal Microresonators for Cavity Quantum Electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[4.8] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317, 783–787 (2007).
[4.9] F. Vollmer and S. Arnold, “Whispering-Gallery-Mode Biosensing: Label-Free Detection down to Single Molecules,” Nat. Methods 5, 591–596 (2008).
[4.10] A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering Gallery Mode Biosensors in the Low Q Limit,” Appl. Phys. B 90, 561–567 (2008).
[4.11] B. E. Little, J. P. Laine, and H. A. Haus, “Analytic Theory of Coupling from Tapered Fibers and Half-Blocks into Microsphere Resonators,” J. Lightwave Technol. 17, 704-715 (1999).
[4.12] A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved Transmission Model for Metal-Dielectric-Metal Plasmonic Waveguides with Stub Structure,” Opt. Express 18, 6191–6204 (2010).
[4.13] J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface Plasmon Reflector based on Serial Stub Structure,” Opt. Express 17, 20134–20139 (2009).
[4.14] A. Hosseini and Y. Massoud, “Nanoscale Surface Plasmon Based Resonator using Rectangular Geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[4.15] J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon Flow Control at Gap Waveguide Junctions using Square Ring Resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[4.16] G. Veronis and S. Fan, “Bends and Splitters in Metal-Dielectric-Metal Subwavelength Plasmonic Waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[4.17] D. F. P. Pile and D. K. Gramotnev, “Plasmonic Subwavelength Waveguides: Next to Zero Losses at Sharp Bends,” Opt. Lett. 30, 1186–1188 (2005).
[4.18] T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High Sensitivity Nanoparticle Detection using Optical Microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[4.19] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-Chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultrahigh-Q Microresonator,” Nat. Photonics 4, 46–49 (2010).
[4.20] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[4.21] M. L. Gorodetsky and V. S. Ilchenko, “Optical Microsphere Resonators: Optimal Coupling to High-Q Whispering Gallery Modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[4.22] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal Coupling in Traveling-wave Resonators,” Opt. Lett. 27, 1669–1671 (2002).
[4.23] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh Scattering in high-Q Microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[4.24] J. Avelin, R. Sharma, I. Hänninen, and A. H. Sihvola, “Polarizability Analysis of Cubical and Square-Shaped Dielectric Scatterers,” IEEE Trans. Antenn. Propag. 49, 451–457 (2001).
[4.25] C. V. Raman and K. S. Krishnan, “A Newtype of Secondary Radiation,” Nature 121, 501–502 (1928).
[4.26] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
[4.27] S. L. McCall and P. M. Platzman, “Raman Scattering from Chemisorbed Molecules at Surfaces,” Phys. Rev. B 22, 1660-1662 (1980).
[4.28] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg–Teller Contributions,” J. Chem. Phys. 84, 4174-4180 (1986).
[4.29] F. Goos and H. Hänchen, Ein neuer und Fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436, 333–346 (1947).
[4.30] Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601 (2001).
[4.31] R. Gordon, “Light in a Subwavelength Slit in a Metal: Propagation and Reflection,” Phys. Rev. B 73, 153405 (2006).
[4.32] R. Gordon, “Angle-Dependent Optical Transmission through a Narrow Slit in a Thick Metal Film,” Phys. Rev. B 75, 193401 (2007).
[4.33] Klaus Halterman and Simin Feng, “Resonant Transmission of Electromagnetic Fields through Subwavelength Zero-ε Slits,” Phys. Rev. A 78, 021805 (2008).
[4.34] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of Permittivity and Permeability,” Sov. Phys. Usp. 10, 509 (1968).
[4.35] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[4.36] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846-9853 (1999).
[4.37] V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63, 241-247 (1991).
[4.38] J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc. 60, 989-993 (2006).
[4.39] K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold−nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173-2176 (2006).
[4.40] P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935-5944 (1984).
[4.41] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[4.42] K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493-1497 (1998).
[4.43] A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[4.44] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature (London) 383, 802-804 (1996).
[4.45] Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373, 132-134 (1995).
[4.46] S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249-259 (2006).
[4.47] A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
[4.48] Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110-1113 (1997).
[4.49] K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106, 8096-8099 (2002).
[4.50] Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109, 3387-3391 (2005).
[4.51] Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108, 673-678 (2004).
[4.52] G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010).
[4.53] H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139-1146 (2009).
[4.54] P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B 53, 12659-12662 (1996).
[4.55] L. Xu, and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26-31 (2003).
[4.56] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007).
[4.57] R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120, 11746-11753 (2004).
[4.58] G. Baffou, R. Quidant, and F. J. G. de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709-716 (2010).
[4.59] R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165, 497-531 (1853).
[4.60] N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, Orlando, Florida 1976), Chap. 1.
[4.61] K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol Scand. 23, 320-328 (1979).
[4.62] M. I. Hafez, S. Zhou, R. R. H Coombs, I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers in Surgery and Medicine 29, 33-37 (2001).
[4.63] S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34, 5224-5228 (2001).
[4.64] J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).
[4.65] D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66, 255-260 (1987).
[4.66] D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PANS 100, 13549-13554 (2003).
第五章
[5.1] M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “Blinking” Kinetics of Single CdSe Quantum Dots: A Universal Power Law Behavior,” J. Chem. Phys. 112, 3117-3120 (2000).
[5.2] M. Pelton, D. G. Grier, and P. Guyot-Sionnest, “Characterizing Quantum-Dot Blinking Using Noise Power Spectra,” Appl. Phys. Lett. 85, 819-821 (2004).
[5.3] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, M. S. Feld, “Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. E 57, R6281-R6284 (1998).
[5.4] H. Zohar and S. J. Muller, “Labeling DNA for Single-Molecule Experiments: Methods of Labeling Internal Specific Sequences on Double-Stranded DNA,” Nanoscale 3, 3027-3039 (2011).
[5.5] K. Firman, L. Evans, J. Youell, “A Synthetic Biology Project-Developing a Single-Molecule Device for Screening Drug-Target Interactions,” FEBS Lett. 586, 2157-2163 (2012).
[5.6] H. P. Lu and X. S. Xie, “Single-Molecule Spectral Fluctuations at Room Temperature,” Nature 385, 143-146 (1997).
[5.7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, and I. Itzkan, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[5.8] D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors,” Phys. Rev. 140, A202-A220 (1965).
[5.9] A. Weiss and G. Haran, “Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics,” J. Phys. Chem. B 105, 12348-12354 (2001).
[5.10] D. P. Formm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the Chemical Enhancement for Surface-Enhanced Raman Scattering with Au Bowtie Nanoantennas,” J. Phys. Chem. 124, 061101 (2006).
[5.11] S. A. Meyer, E. C. Le Ru, and P. G. Etchegoin, “Quantifying Resonant Raman Cross Sections With SERS,” J. Phys. Chem. A 114, 5515-5519 (2010).
[5.12] R. F. Kubin and A. N. Fletcher, “Fluorescence Quantum Yields of Some Rhodamine Dyes,” J. Luminescence 27, 455-462 (1982).
[5.13] R. S. Chao, R. K. Khanna, and E. R. Lippincott, “Theoretical and Experimental Resonance Raman Intensities for the Manganate Ion,” J. Raman Spectrosc. 3, 121-131 (1975).
[5.14] T. W. Collette and T. L. Williams, “The Role of Raman in the Analytical Chemistry of Potable Water,” J. Environ. Monit. 4, 27-34 (2002).
[5.15] Watanabe, H; Hayazawa, N; Inouye, Y; Kawata, S, “DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy,” J. Phys. Chem. B 2005, 109, 5012–5020.
[5.16] A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “ Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate,” J. Phys. Chem. B 108, 19191-19197 (2004).
[5.17] S. Harish, R. Sabarinathan, J. Joseph, and K. L. N. Phani, “Role of pH in the Synthesis of 3-Aminopropyl Trimethoxysilane Stabilized Colloidal Gold/Silver and Their Alloy Sols and Their Application to Catalysis,” Mater. Chem. Phys. 127, 203-207 (2011).
[5.18] Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap Between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7, 690-693 (2007).
[5.19] R. Verberk, A. M. Van Oijen, and Michel Orrit, “Simple Model for the Power-Law Blinking of Single Semiconductor Nanocrystals,” Phys. Rev. B 66, 233202 (2002).
[5.20] M. Pelton, D. G. Grier, and P. Guyot-Sionnest, “Characterizing Quantum-Dot Blinking using Noise Power Spectra,” Appl. Phys. Lett. 85, 819-821 (2004).
[5.21] Daniel L. Rudnick and Russ E. Davis, “Red noise and regime shifts,” Deep-Sea Research I 50, 691–699 (2003).
[5.22] J. Tang, and R. A. Marcus, “Mechanism of fluorescence blinking in semiconductor nanocrystal quantum dots,” J. Chem. Phys. vol. 123, 054704, August 2005.
[5.23] A. Weiss and G. Haran, “Single Molecule SERS Spectral Blinking and Vibronic Coupling,” J. Phys. Chem. C 115, 4540-4545 (2011).
[5.24] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, B864-B871 (1964).
[5.25] R. Zondervan , F. Kulzer , S. B. Orlinskii, and M. Orrit, “Photoblinking of Rhodamine 6G in Poly(vinyl alcohol): Radical Dark State Formed through the Triplet,” J. Phys. Chem. A 107, 6770–6776 (2003).
[5.26] F. Masia, W. Langbein, P. Watson, and P. Borri, “Resonant Four-Wave Mixing of Gold Nanoparticles for Three-Dimensional Cell Microscopy,” Opt. Lett. 34, 1816–1818 (2009).
[5.27] Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[5.28] N. Garrett, M. Whiteman, and J. Moger, “Imaging the Uptake of Gold Nanoshell in Live Cells using Plasmon Resonance Enhanced Four Wave Mixing Microscopy,” Opt. Express 19, 17563–17574 (2011).
[5.29] Ranka, J. K., R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[5.30] J. M. Dudley, G. G.enty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[5.31] M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[5.32] S. Palomba and L. Novotny, “Nonlinear Excitation of Surface Plasmon Polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[5.33] J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-Enhanced Nonlinear Four-Wave Mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[5.34] H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, “Nonlinear Dark-Field Microscopy,” Nano Lett. 10, 5076-5079 (2010).
[5.35] S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, and L. Novotny, “Nonlinear Plasmon at Planar Metal Surfaces,” Phil. Trans. R. Soc. A 369, 3497-3509 (2011).
[5.36] Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano Resonances in a Plasmonic Nanocluster Enhance Optical Four-Wave Mixing,” PNAS 110, 9215-9219 (2013).
[5.37] E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. van Stryland, “Degenerate Four-Wave Mixing Measurement of High Order Nonlinearities in Semiconductor,” IEEE J. Quantum Electron. 27, 2274-2280 (1991).
[5.38] F. Masia, W. Langbein and P. Borri, “Measurement of the Dynamics of Plasmons Inside Individual Gold Nanoparticles using a Femtosecond Phase-Resolved Microscope,” Phys. Rev. B 85, 235403 (2012).
[5.39] F. Masia, W. Langbein and P. Borri, “Polarization-Resolved Ultrafast Dynamics of the Complex Polarizability in a Single Gold Nanoparticles,” Phys. Chem. Chem. Phys. 15, 4226-4232 (2013).
[5.40] H. F. Talbot, “Facts Relating to Optical Science,” Philos. Mag. No IV, 401-407 (1836).
[5.41] L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, Mark Edwards, Charles W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, Matter-Wave-Dispersion Talbot Effect,” Phys. Rev. Lett. 83, 5407-5411 (1999).
[5.42] L. Rayleigh, “On copying Diffraction Gratings and on Some Phenomenon Connected Therewith,” Philos. Mag. 11, 196-205 (1881).
[5.43] Jaap H. M. Neijzen, Robert D. Morton, Peter Dirksen, Henry J. L. Megens, Frank Bornebroek, “Automatic Alignment System for Optical Projection Printing,” Proc. SPIE 3677, 382-394 (1999).
[5.44] G. Bouwhuis and S. Wittekoek, “Improved Wafer Stepper Alignment Performance using an Enhanced Phase Grating Alignment System,” IEEE Trans. Electron Devices ED-26, 723-728 (1979).
[5.45] Igor I. Smolyaninov and Christopher C. Davis, “Apparent Superresolution in Near-Field Optical Imaging of Periodic Gratings,” Opt. Lett. 23, 1346-1347 (1998).
[5.46] Daniel Crespo, José Alonso, and Eusebio Bernabeu, “Generalized Grating Imaging using an Extended Monochromatic Light Source,” J. Opt. Soc. A. 17, 1231-1240 (2000).
[5.47] M. R. Dennis, N. I. Zheludev, and F. Javier García de Abajo, “The Plasmon Talbot Effect,” Opt. Express 15, 9692-9700 (2007).
[5.48] J. Wen, Y. Zhang, S. N. Zhu, and M. Xiao, “Theory of Nonlinear Talbot Effect,” J. Opt. Soc. B. 28, 275-280 (2011).
[5.49] Y. Lu, C. Zhou, and H. Luo, “Talbot Effect of a Grating with Different Kinds of Flaws,” J. Opt. Soc. A. 22, 2662-2667 (2005).
[5.50] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through a Phase Mask,” Appl. Phys. Lett. 62, 1035-1037 (1993). |