博碩士論文 100521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.191.154.174
姓名 賴柏辰(Po-Chen Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 條紋式半極化(1-101)氮化鎵/氮化銦鎵藍光發光二極體特性研究
(Characterization of Multi-stripes Semi-polar(1-101) GaN/InGaN Light Emitting Diodes)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中係在矽基板上製作V型凹槽並成長具有半極化(1-101)面的氮化鎵/氮化銦鎵發光二極體結構,將其製作成元件。因為具有半極化(1-101)面的量子井發光二極體結構具有較小的反向極化電場,模擬分析以及量測結果顯示,此結構能夠改善效率衰退(Efficiency droop)的問題,與一般極化(0001) 發光二極體比較,前者之效率衰退的比例僅有11.52 %,而後者則高達52.1 %。然而長條紋島狀結構容易在接合處引發非(1-101)的傾斜晶格面,產生大量的錯誤堆疊以及缺陷,使得在接合處的銦分布不均勻,造成發光不均勻和強度下降。為了將發光效率提高以及改善發光純度問題,本研究提出了一種新結構的設計,於傾斜7°(001)矽圖形化基板上成長半極化(1-101)氮化鎵材料時,不讓最初的氮化鎵條紋島狀結構接合,而是在條紋島上成長為具有多層量子井的獨立長條紋島狀發光二極體結構。此新結構不僅免除了長條紋島狀結構因接合產生的應力而龜裂,和傳統接合式的半極化發光二極體相比,PL的半高寬從44.3 nm降到35.9 nm,最重要的是大幅提升了1x1 mm2的元件在350 mA下的發光強度達66.7 %,使得半極化(1-101)發光二極體有了更好的光電特性。此方法不僅改善了效率衰退的問題,更提升了自身的光電特性,提供一個發光二極體未來發展的方向。
摘要(英) In this thesis, semi-polar (1-101) GaN / InGaN LEDs was fabricated on v-groove Si (001) substrates and processed to devices. Semi-polar (1-101) plane GaN can improve efficiency droop due to the weak reverse polarization field which can be observed by simulation tools. The efficiency droop ratios of polar and semi-polar LEDs are 52.1% and 11.52% respectively. However the amount of inclination was increased at higher indium content. Inclining is caused by the vest of existence of stacking faults or defects at InGaN/GaN interface on the coalescence region. Therefore, this inclination will affect the In fluctuation and decrease the light output power. In order to improve the light emission efficiency and purity problems, this study proposes a new structural design. It is called multi-stripes structure, consists of n-GaN layer without coalescence, an active region composed of InGaN/GaN quantum well cover the triangle surface, and p-GaN layer make coalescence layer of each stripe. This new structure not only eliminates cracking caused by stress, but also has a great improvement compares with coalescence structure. The photoluminescence shows FWHM dropped from 44.3 nm 35.9 nm and the output power enhanced up to 66.7% (1x1 mm2 device at 350 mA). It shows semi-polar (1-101) light-emitting diodes have a better optical property.
This study proposes a new structure - "multi-stripe semi-polar (1-101) GaN light-emitting diodes." The new structure not only improves the efficiency droop problem but also enhances the optical characteristics, which provides a modern direction of LEDs development.
關鍵字(中) ★ 半極化
★ (1-101)
★ 氮化鎵
★ 發光二極體
關鍵字(英) ★ semi-polar
★ (1-101)
★ GaN
★ Light Emitting Diode
論文目次 中文摘要 IV
英文摘要 V
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 氮化鎵材料成長於矽基板上的動機 5
1-3 研究動機與方法 8
第二章 實驗設備與原理 9
2-1 前言 9
2-2 半極化(1-101)所需V型凹槽矽基板之製作流程 9
2-3 V型凹槽基板的困難與改善 13
2-4 結論 19
第三章 半極化(1-101)氮化鎵發光二極體特性與分析 20
3-1 前言 20
3-2 半極化(1-101)氮化鎵發光二極體的模擬分析 21
3-3 半極化(1-101)LED元件製作流程 26
3-4 半極化(1-101)發光二極體光電特性分析 35
3-5 結論 41
第四章 多條紋式半極化(1-101)氮化鎵發光二極體 42
4-1 前言 42
4-2 多條紋半極化發光二極體磊晶結構與製作 43
4-3 多條紋式半極化發光二極體的光電特性分析 45
4-4 接合式與多條紋式半極化發光二極體分析討論 50
4-5 結論 53
第五章 結論 55
參考文獻 57
參考文獻 [1] Chin-Chi Wu, 成長於矽基板之半極化氮化鎵磊晶層特性研究,國立中央大學碩士論文(2009)
[2] Hsien-Yu Lin, Characterization of GaN and InGaN Grown on Patterned 7o-off (001) Si Substrate,國立中央大學碩士論文(2011)
[3] D. G. Zhao, S. J. Xu,a) M. H. Xie, and S. Y. Tong, Appl. Phys. Lett. 83, 4 (2003).
[4] Semiconductor Technology Research, Inc. Simulator of Light Emitters based on Nitride Semiconductors (SiLENSe)
[5] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).
[6] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun,S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M.
Steranka, Phys. Status Solidi A 188, 15 (2001).
[7] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
[8] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, Appl. Phys. Lett. 94, 041103 (2009).
[9] I. V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007).
[10] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger,M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
[11] Y. J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H. T. Grahn, K. H. Ploog, P. Waltereit, and J. S. Speck, Phys. Rev. B 67, 041306 (2003).
[12] H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002).
[13] H. M. Ng, A. Bell, F. A. Ponce, and S. N. G. Chu, Appl. Phys. Lett. 83, 653 (2003).
[14] M. D. Craven, P. Waltereit, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 84, 496 (2004).
[15] Yoshio Honda, NorifumiKameshiro, Masahito Yamaguchi, Nobuhiko Sawaki, J. Cryst. Growth 242 82-86 (2002).
[16] T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, phys. stat. sol. (c), 1-4 (2008).
[17] J.S. Speck and S.F. Chichibu, Guest Editors, MRS BULLETIN • VOLUME 34 • MAY (2009).
[18] M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, Appl. Phys. Lett. 92, 011920 (2008).
[19] H. Masui, H. Yamada, K. Iso, J. S. Speck, S. Nakamura, and S. P. Den-Baars, J. Soc. Inf. Disp. 16, 571 (2008).
[20] S. Tripathy, V. K. X. Lin, S. L. Teo, A. Dadgar, A. Diez, J. Bläsing, and A. Krost, Appl. Phys. Lett. 91, 231109 (2007).
[21] Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[22] Landolt-Börnstein, III/41 A1a (Springer, Berlin/Heidelberg/New York, 2001)
[23] R. Hull, Properties of crystalline silicon, (EMIS datareview series No. 20, 1999).
[24] M. S. Shur and M. A. Khan, Mater. Res. Bull. 22, 44 (1997).
[25] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).
[26] E. K. Sichel and J. I. Pankove, J. Phys. Chem. Solids 38, 330 (1977).
[27] Landolt-Börnstein, Vol. 17 (Spinger, New York, 1992).
[28] Madelung, Semiconductors Group IV and III-V compounds (Spinger, Berlin, 1991).
[29] Yoshio Honda, Norifumi Kameshiro, Masahito Yamaguchi, and Nobuhiko Sawaki,“Growth of (1-101) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE”,J. Cryst. Growth 242, 82 (2002)
[30] Baoshun Zhang, Hu Liang, Yong Wang, Zhihong Feng, Kar Wei Ng, and Kei May Lau,“High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates”, J.Cryst. Growth 298, 725 (2007)
[31] Shigeyasu Tanaka, Yoshio Honda, Nobuhiko Sawaki, and Michio Hibino, “Structuralcharacterization of GaN laterally overgrown on a (111)Si substrate”, Appl. Phys. Lett. 79, 955(2001)
[32] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T.Riemann, J. Christen, and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers onstructured Si(111) substrates”, Appl. Phys. Lett. 78, 727 (2001)
[33] K.Y. Zang, Y.D. Wang, L.S. Wang, S. Tripathy, S.J. Chua, and C.V. Thompson,“Nanoheteroepitaxy of GaN on a nanopore array of Si(111) surface”, Thin Solid Films 515,4505 (2007)
[34] Guan-Ting Chen, Jen-Inn Chyi, Chia-Hua Chan, Chia-Hung Hou, Chii-Chang Chen, andMao-Nan Chang, “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated bypolystyrene microsphere lithography”, Appl. Phys. Lett. 91, 261910 (2007)
[35]T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Strain relaxation in thick (1-101) InGaN grown on GaN/Si substrate” physical status solidi (b), 3, 468 (2012).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2013-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明