博碩士論文 100521112 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.138.135.4
姓名 洪維鍾(Wei-chung Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於散佈式耦合饋入架構實現多頻雙工器設計
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中利用散佈式耦合的饋入技術與步階式阻抗共振器(stepped-impedance resonator, SIR)實現了多頻雙工器的設計,由於散佈式耦合的饋入技術的低負載效應,因此不需要複雜的匹配網路來設計多頻帶的電路。
本論文前三個電路分別為雙頻雙工器、三頻雙工器和四頻雙工器,電路架構包含了二分之一波長步階式阻抗共振器、共用的輸入饋入線和輸出饋入線。每個通帶皆由一對共振器控制可增加設計自由度,由於散佈式耦合饋入技術的低負載效應,使得每個通帶可以分別設計再將其整合在一起。此三個電路皆具有高隔離度及寬止帶的特性,在隔離度的部分可以達到29 dB以上,20-dB止帶可達到7.6倍的最低操作中心頻率。
在最後一個電路中,利用散佈式耦合饋入架構與兩對步階式阻抗共振器設計雙頻雙頻器,其中每一對共振器分別設計兩個通帶,進而達到面積縮小的效果,且通道間的隔離度仍保持在29 dB以上。
摘要(英) Distributed coupling technique and stepped-impedance resonators is employed to realize multi-band diplexer. Due to the low loading effect from distributed coupling technique, the proposed circuits can design many channels without the use of complicated matching network.
The first three circuits include a dual-band diplexer, tri-band diplexer and quad-band diplexer. The circuits consist of half-wavelength stepped-impedance resonators, a common feeding line and output feeding lines. Each passband is controlled by respective pair of resonators to increase design freedom. Due to the low loaded effect, each passband can be design respectively, and finally combine bandpass filters into multi-band diplexers. The circuits have high isolation and wide stopband performance. The isolation is more than 29 dB and the 20-dB stopband up to 7.6 × the lowest operation center frequency.
In last circuit, distributed coupling technique and two pairs of stepped-impedance resonators is employed to realize dual-band diplexer. Each pairs of resonator is designed to a dual-band performance, so the circuit size can be smaller than before. The channel isolation is more than 29 dB.
關鍵字(中) ★ 雙工器 關鍵字(英) ★ diplexer
論文目次 摘要 ....................... ............ I
ABSTRACT ........... ............................. II
致謝 ................................. ......... III
目錄 ...................................... ......... IV
圖目錄 ........................................ ..... VI
表目錄 ....... ................................ ..... IX
第一章 緒論 ...... ................................... 1
1-1 研究動機 ........................ ......................... 1
1-2 文獻回顧 ......................................... 2
1-3 章節介紹 ............................ ..................... 6
第二章 諧波壓抑原理 ............................. .................... 7
2-1 簡介 ................ ......................... . 7
2-2 步階式阻抗共振器的分析 ...................... ........................... 7
2-3 使用散佈式耦合饋入架構之設計 ................................ ................. 11
2-3.1 寬止帶之單頻通濾波器設計 .................................... ............ 12
2-3.2 使用不同的二分之一波長步階式阻抗共振器設計 .................................... ............ 14
第三章 具寬止帶之多頻雙工器 具寬止帶之多頻雙工器 ................... ............................. 16
3-1 簡介 .......... ................................ 16
3-2 具寬止帶之雙頻工器設計理論 ..................................... ........... 16
3-2.1 具寬止帶之雙頻工器設計 ............................... ................. 17
3-2.2 具寬止帶之雙頻工器模擬與量測結果 .................... ............................ 27
3-3 具寬止帶之三頻雙工器設計 ............................. ................... 29
3-3.1 具寬止帶之三頻雙工器模擬與量測結果 .................... ............................ 38
3-4 具寬止帶之四頻雙工器設計 ............................. ................... 41
3-4.1 具寬止帶之四頻雙工器模擬與量測結果 ................... ............................. 58
第四章 雙頻工器 雙頻工器 ................................ ................ 62
4-1 簡介 ........... ............................... 62
4-2雙頻工器設計 .................................... ............ 62
4-3雙頻工器模擬與量測結果 ........................ ........................ 69
第五章 結論與未來展望 結論與未來展望 ........................................ ........ 72
參考文獻 ......................................... .. 73
參考文獻 [1] J.-T. Kuo and H.-P. Lin, “Dual-band bandpass filter with improved performance in extended upper rejection band,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824–829, Apr. 2009.
[2] P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[3] X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[4] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling scheme,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[5] Y.-C. Chang, C.-H. Kao, M.-H. Weng, R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, December 2009.
[6] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri- section SIR, ” Electron. Lett., vol. 44, no. 4, pp. 295–296, Feb. 2008.
[7] C.-I G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[8] F.-C. Chen, Q.-X. Chu and Z.-H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol. 44, no. 12, pp. 747–749, Jun. 2008.
[9] H.-W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol 21, no.4, pp. 203–205, Apr. 2011.
[10] S.-C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[11] K.-W. Hsu and W.-H. Tu, “Design of a novel four-band microstrip bandpass filter using double-layered substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp. 1041–1044.
[12] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters, ” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 142–144, Mar. 2010.
[13] C.-F. Chen, “Design of a compact microstrip quint-band filter base on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, Jul. 2012.
[14] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 11, pp. 583-585, Nov. 2011.
[15] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May 2006.
[16] P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C. H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4185–4192, Dec. 2006.
[17] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848–856, Apr. 2011.
[18] J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173–175, Apr. 2012.
[19] C.-F. Cheng, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Comp. Lett., vol. 21, no. 10, pp. 534–536, October 2011.
[20] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol.21, no.4, pp.197–199, Apr. 2011.
[21] T.-Y. Yun, C. Wang, P. Zepeda, C. T. Rodenbeck, M. R. Coutant, M.-Y. Li, and K. Chang, “A 10- to 21-GHz low-cost, multifrequency, and full-duplex phased-array antenna system”, IEEE Trans. Antennas Propag., vol. 50, no. 5, pp.641–650, May 2002.
[22] S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370−1378, Apr. 2006.
[23] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818−1820, Oct. 2001.
[24] Y. Ning, “A new multiple-frequency millimeter diplexer using microstrip periodic-stub,” IET International Conference on Wireless Mobile and Multimedia Networks Proceedings (ICWMMN 2006), Hangzhou, China, Nov. 2006, pp. 335−337.
[25] H.-W. Wu, S.-H. Huang and Y.-F. Chen, “Design of new quad-channel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240–242, May. 2013.
[26] D. Zayniyev and D. Budimir, “Microstrip three-port 4-channel multiplexers using dual-band bandpass filters for wireless application,” in Proc. IEEE Int. AP-S Symp. San Diego, CA, Jul. 2008, pp. 1−4.
[27] M. L. Lai and S. K. Jeng, “A microstrip three-port and four-channel multiplexer for WLAN and UWB coexistence,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3244–3250, Oct. 2005.
[28] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[29] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
指導教授 凃文化(Wen-hua Tu) 審核日期 2013-11-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明