參考文獻 |
[1] J.-T. Kuo and H.-P. Lin, “Dual-band bandpass filter with improved performance in extended upper rejection band,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824–829, Apr. 2009.
[2] P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[3] X.-Y. Zhang, J.-X. Chen, Q. Xue, and S.-M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[4] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling scheme,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[5] Y.-C. Chang, C.-H. Kao, M.-H. Weng, R.-Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780–782, December 2009.
[6] Q.-X. Chu and X.-M. Lin, “Advanced triple-band bandpass filter using tri- section SIR, ” Electron. Lett., vol. 44, no. 4, pp. 295–296, Feb. 2008.
[7] C.-I G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-band bandpass filter with sharp passband skirts designed using tri-section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 19–21, Jan. 2008.
[8] F.-C. Chen, Q.-X. Chu and Z.-H. Tu, “Tri-band bandpass filter using stub loaded resonators,” Electron. Lett., vol. 44, no. 12, pp. 747–749, Jun. 2008.
[9] H.-W. Wu and R.-Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol 21, no.4, pp. 203–205, Apr. 2011.
[10] S.-C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[11] K.-W. Hsu and W.-H. Tu, “Design of a novel four-band microstrip bandpass filter using double-layered substrate,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp. 1041–1044.
[12] J.-C. Liu, J.-W. Wang, B.-H. Zeng, and D.-C. Chang, “CPW-fed dual-mode double-square-ring resonators for quad-band filters, ” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 142–144, Mar. 2010.
[13] C.-F. Chen, “Design of a compact microstrip quint-band filter base on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, Jul. 2012.
[14] M.-L. Chuang and M.-T. Wu, “Microstrip diplexer design using common T-shaped resonator,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 11, pp. 583-585, Nov. 2011.
[15] C.-F. Chen, T.-Y. Huang, C.-P. Chou, and R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May 2006.
[16] P.-H. Deng, M.-I. Lai, S.-K. Jeng, and C. H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4185–4192, Dec. 2006.
[17] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848–856, Apr. 2011.
[18] J.-Y. Wu, K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173–175, Apr. 2012.
[19] C.-F. Cheng, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw. Wireless Comp. Lett., vol. 21, no. 10, pp. 534–536, October 2011.
[20] S.-J. Zeng, J.-Y. Wu, and W.-H. Tu, “Compact and high-isolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol.21, no.4, pp.197–199, Apr. 2011.
[21] T.-Y. Yun, C. Wang, P. Zepeda, C. T. Rodenbeck, M. R. Coutant, M.-Y. Li, and K. Chang, “A 10- to 21-GHz low-cost, multifrequency, and full-duplex phased-array antenna system”, IEEE Trans. Antennas Propag., vol. 50, no. 5, pp.641–650, May 2002.
[22] S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370−1378, Apr. 2006.
[23] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1818−1820, Oct. 2001.
[24] Y. Ning, “A new multiple-frequency millimeter diplexer using microstrip periodic-stub,” IET International Conference on Wireless Mobile and Multimedia Networks Proceedings (ICWMMN 2006), Hangzhou, China, Nov. 2006, pp. 335−337.
[25] H.-W. Wu, S.-H. Huang and Y.-F. Chen, “Design of new quad-channel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240–242, May. 2013.
[26] D. Zayniyev and D. Budimir, “Microstrip three-port 4-channel multiplexers using dual-band bandpass filters for wireless application,” in Proc. IEEE Int. AP-S Symp. San Diego, CA, Jul. 2008, pp. 1−4.
[27] M. L. Lai and S. K. Jeng, “A microstrip three-port and four-channel multiplexer for WLAN and UWB coexistence,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3244–3250, Oct. 2005.
[28] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[29] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001. |