所別:<u>電機工程學系碩士班 電波組(一般生)</u> 科目:<u>電磁學 共 フ</u>頁 第<u>/</u>頁 本科考試禁用計算器

*請在試卷答案卷(卡)內作答

1.

- (a) (2%) Write down the differential form of Ampère-Maxwell equation (i.e. Ampère's circuital law incorporating Maxwell's displacement current term).
- (b) (2%) Write down the differential form of the equation of continuity.
- (c) (2%) Write down the differential form of Gauss's law.
- (d) (4%) Derive Gauss's law from Ampère-Maxwell equation and the equation of continuity.
- 2. Consider a plane wave obliquely impinging upon a boundary between two lossless dielectric materials with different permittivities as illustrated in the figure below. Both medium 1 and medium 2 are nonmagnetic, i.e. their permeabilities are both μ_0 . The relative permittivities of medium 1 and medium 2 are 12 and 4, respectively.

The E field of the incident wave is as follows.

$$\vec{\mathbf{E}}_{i}(x,z,t) = 5\left(\vec{\mathbf{a}}_{x}\cos\theta_{i} - \vec{\mathbf{a}}_{z}\sin\theta_{i}\right)\cos(\omega t - \beta_{1}x\sin\theta_{i} - \beta_{1}z\cos\theta_{i}) \quad (V/m),$$

where \vec{a}_x and \vec{a}_z are unit vectors pointing in x and z directions, respectively, and β_1 is the phase constant of medium 1.

- (a) (4%) Write down the phasor expression for the E-field of the incident wave, i.e. $\vec{E}_i(x,z)$.
- (b) (2%) What is the polarization of the incident wave? (e.g., linear polarization, right-hand circular polarization, left-hand elliptical polarization.)
- (c) (2%) Calculate the intrinsic impedance of medium 2.
- (d) (2%) Calculate the Brewster angle for parallel polarization. Express it in degree.
- (e) (2%) Calculate the Brewster angle for perpendicular polarization. Express it in degree.
- (f) (2%) If the angle of incidence θ_i is 30°, determine the angle of refraction θ_i . Express it in degree.
- (g) (4%) If θ_i is 30°, find the phasor expression for the E-field of the reflected wave, i.e. $\vec{\mathbf{E}}_{\mathbf{r}}(x,z)$.
- (h) (2%) Let β_2 be the phase constant of medium 2. Express β_2 in terms of β_1 .
- (i) (5%) If θ_i is 30°, find the phasor expression for the E-field of the transmitted wave, i.e. $\vec{E}_t(x,z)$.

注:背面有試題

所別:<u>電機工程學系碩士班 電波組(一般生)</u> 科目:<u>電磁學</u> 共<u>う</u>頁 第<u>之</u>頁 本科考試禁用計算器

*請在試卷答案卷(卡)內作答

- 3. For a transmission line with four distributed parameters R, L, G, and C. The line is in the medium with constitutive parameters (ε , μ , σ).
 - (a) (10%) Explain why $G/C = \sigma/\epsilon$.
 - (b) (10%) Explain why $LC = \mu \epsilon$.
 - (c) (10%) Assume there is such a transmission line of very short length △z. Draw its equivalent circuit.
- 4.
- (a) (2%) What is the dominant mode of the rectangular waveguide? What is the dominant mode of a parallel-plate waveguide?
- (b) (3%) Why the TEM waves cannot exist in the rectangular waveguide?
- (c) (5%) What should be the size of an air-filled cubic cavity made of copper in order for it to have a dominant frequency of f_0 GHz?
- (d) (5%) Define the quality factor of the cavity resonator. Assuming the copper conductivity is σ , find the quality factor at that frequency.
- 5. (20%) A signal generator is to feed equal power through a lossless air transmission line with a characteristic impedance 50 Ω to two separate loads, $Z_{LA} = 100 + j100$ (Ω), and $Z_{LB} = 200 j100$ (Ω). As shown in Fig. 1, a single-stub method is used to match the loads to the line. Use the Smith Chart as shown in next page to determine the required lengths, l_A , l_B , and l_C of the transmission lines. (You should provide 4 possible solutions, and draw all your results in your answer sheets.)

Fig. 1

注:背面有試題

所別:<u>電機工程學系碩士班 電波組(一般生)</u> 科目:電磁學 共<u></u>頁 第<u></u>頁 集 本科考試禁用計算器

*請在試卷答案卷(卡)內作答

The Smith Chart

