國立中央大學 107 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 固態組(一般生)

共2頁 第上頁

科目: 半導體元件

本科考試禁用計算器

*請在答案卷(卡)內作答

1. (5%) (a) At 300 K, the lattice constant for Si is 0.543 nm, Calculate the number of Si atoms per cubic nanometer.

(5%) (b) What is the distance between nearest neighbors in Si? Give your answer in nm. $\sqrt{2} = 1.732$.

2. (4%)(a) If the continuity equation for hole is $\frac{\partial p}{\partial t} = c_1 \frac{\partial J_p}{\partial x} + (G_p - R_p)$, J_p is the hole current density, G_p is the hole generation rate, and R_p is the hole recombination rate. Find the expression for c_1 .

(3%)(b) Assuming an n-type sample under uniform illumination, the continuity equation for hole in (a) can be used to find $p_n(t)$. $R_p = \frac{p_n - p_{no}}{\tau_p}$, τ_p is the hole life time. In steady state (t < 0), $\frac{\partial p_n}{\partial t} = 0$, and for uniform distribution, $\frac{\partial^2 p_n}{\partial x^2} = 0$, and $G_p = G_L$, find $p_n(t)$ for t < 0.

(3%)(b) At t = 0, the light is turned off. Find $p_n(t)$ for $t \ge 0$.

3. Consider a silicon pn junction with doping concentrations of $N_a=1\times 10^{17}~\rm cm^{-3}$ and $N_d=2\times 10^{17}~\rm cm^{-3}$. Assume $V_{bi}=V_{bi}^p+V_{bi}^n$, $W=x_p+x_n$. V_{bi}^p is the built-in voltage across the p-side of the junction, and x_p is the depletion width across the p-side of the junction.

(5%)(a) If $V_{bi}^p = V_{bi}/(1+r_1)$, calculate r_1 .

(5%)(b) If $x_n = W/(1 + r_2)$, calculate r_2 .

4. For steady state and electric field E=0, the excess minority carrier hole concentration $\delta p(x)$ in the n region is determined from with $\delta p(0)=c_1$, and $\delta p(x_B)=c_2$. (10%) (a) If $\delta p(x)=Ae^{sx}+Be^{-sx}$, find s. If $A=\frac{f_1}{2\sinh(\frac{x_B}{L_p})}$, and $B=\frac{f_2}{2\sinh(\frac{x_B}{L_p})}$, find f_1 and f_2 .

(5%) (b) If $\delta p(x) = f_3 \cdot \sinh(\frac{x_B - x}{L_n}) + f_4 \cdot \sinh(\frac{x}{L_n})$, find f_3 and f_4 .

(5%) (c) If $\frac{x_B}{L_p} \to 0$, and $\delta p(x) = f_5 \cdot \frac{x_B - x}{x_B} + f_6 \cdot \frac{x}{x_B}$, find f_5 and f_6 .

5. Consider a p-type silicon substrate doped to $N_a = 1 \times 10^{16} \text{ cm}^{-3}$. The oxide is silicon dioxide with a thickness of $t_{ox} = 18 \text{ nm}$. Note that kT/q = 0.026 V, $n_i = 1 \times 10^{10} \text{ cm}^{-3}$, $E_g = 1.12 \text{ eV}$, the electron affinity X = 4.01 V, $\epsilon_{Si} = 11.7 \times 8.85 \times 10^{-14} \text{ F/cm} = 103.5 \times 10^{-14} \text{ F/cm}$, $\epsilon_{ox} = 3.9 \times 8.85 \times 10^{-14} \text{ F/cm} = 34.5 \times 10^{-14} \text{ F/cm}$, $q = 1.6 \times 10^{-19} \text{ C}$, $\epsilon_{Si}/q = 64.7 \times 10^5 \text{ 1/V·cm}$, and $\ln(10^6) = 13.8$. (7%) (a) If the gate is n^+ -polysilicon, find the threshold voltage V_{Ta} .

(3%) (b) If the gate is p^+ -polysilicon, the threshold voltage is V_{Tb} . Find the value $V_{Tb} - V_{Ta}$.

國立中央大學 107 學年度碩士班考試入學試題

電機工程學系 碩士班 固態組(一般生) 所別:

共2頁 第2頁

科目: 半導體元件

本科考試禁用計算器

*請在答案卷(卡)內作答

6. (4%) (a) Consider an n-channel MOSFET with the channel width $W=1~\mu\mathrm{m}$. The inversion charge $|Q'_n| = 10^{-6} \text{ C/cm}^2$, the electron velocity is 10^6 cm/s . Calculate the channel current I_D .

(3%) (b) If $|Q'_n(y)| = C_{ox}(V_{GS} - V_T - V(y))$, the electron velocity $|v_n(y)| = \mu_n \frac{dV(y)}{dy}$,

and $I_D(y) = f_1 \cdot (V_{GS} - V_T - V_y) \frac{dV_y}{dy}$, find f_1 . (3%) (c) At y = L, $V(y) = V_{DS}$, y = 0, V(y) = 0. Assuming $I_D(y) = I_D$ at any y, and μ_n is constant, find I_D for $(V_{GS} - V_T - V_{DS}) \ge 0$.

7. (10%) Assume the following transistor parameters: the base doping $N_B = 1 \times 10^{15}$ cm⁻³, the emitter doping $N_E = 1 \times 10^{17}$ cm⁻³, the diffusion coefficient in the emitter $D_E = 10 \text{ cm}^2/\text{s}$, the diffusion coefficient in the base $D_B = 20 \text{ cm}^2/\text{s}$, the base width $x_B = 0.6 \ \mu \text{m}$, and the emitter width $x_E = 0.8 \ \mu \text{m}$. The minority carrier diffusion length in the base, $L_B = 10.0 \ \mu \text{m}$. $x_B << L_B$ and $x_E << L_E$. Find the emitter injection efficiency γ , the base transport factor α_T , and the common-emitter current gain β .

8. In an npn Ebers-Moll model, V_{BE} and V_{BC} can be obtained as functions of I_C , I_B , I_{ES} , I_{CS} , α_F , and α_R .

(5%) (a) If $V_{BE} = V_t \cdot \ln(\frac{f_1+t_1}{t_1})$, find f_1 . Note that $t_1 = I_{ES}(1-\alpha_F\alpha_R)$, and $V_t = kT/q$.

(5%) (b) If $V_{BC} = V_t \cdot \ln(\frac{f_2 + t_2}{t_2})$, find f_2 . Note that $t_2 = I_{CS}(1 - \alpha_F \alpha_R)$.

9. (5%) (a) The hybrid-pi ac model for an npn bipolar transistor is shown in Fig. 1. Assume $i_b = g_{11}v_{be} + g_{12}v_{ce}$, and $i_c = g_{21}v_{be} + g_{22}v_{ce}$. If $g_{11} = \frac{\partial x}{\partial v}|_z$, find x, y, and z. (5%) (b) Find r_{π} and g_{m} , which are functions of g_{11} , g_{12} , g_{21} , and g_{22} .

