國立中央大學 110 學年度碩士班考試入學試題 所別: 電機工程學系碩士班 固態組(一般生) 共3頁 第1頁 電機工程學系 碩士班 系統與生醫組(一般生) 電機工程學系碩士班 電波組(一般生) 科目: 電子學 本科考試禁用計算器 *請在答案卷(卡)內作答 # 1. 計算題(10分) # 2. 計算題(10分) Figure P2 shows a BJT amplifier with infinite current gain β . Assume the threshold voltage V_D of ideal diode is 0.7 V and ignore the base current of BJT. Find out the operation region of transistor Q_1 and Q_2 (active or saturation region). (全對 10 分,部分對 3 分,全錯 0 分。) ## 3. 計算題(10分) Figure P3 shows a common-source amplifier which is biased at saturation region with threshold voltage V_{th} = 1 V and channel-length modulation parameter $\lambda = 0.01 \text{ V}^{-1}$. Find the small signal voltage gain $-g_m r_o$. ### 4. 計算題(10分) The ideal OP amplifier circuit is shown in Fig. P4. 4-1 (5 分) If differential gain $A_d = \infty$, find out V_o . 4-2 (5 分) If differential gain A_d = 50 V/V, find out V_o . 注意:背面有試題 # 國立中央大學 110 學年度碩士班考試入學試題 所別: 電機工程學系碩士班 固態組(一般生) 共3頁 第2頁 電機工程學系碩士班 系統與生醫組(一般生) 電機工程學系碩士班 電波組(一般生) 科目: 電子學 本科考試禁用計算器 *請在答案卷(卡)內作答 # 5. 計算題(10分) Figure P5 shows a possible realization of the folded cascode amplifier. All the MOSFETs have $|V_A|$ = 5 V. Let $I = 100 \,\mu\text{A}$, and assume that the MOSFETs are operating at V_{OV} = 0.2 V. Assume the current sources are ideal. Please determine 5-1 (5 分) the output resistance Rout. 5-2 (5 分) the voltage gain A_V . Fig. P5 #### 6. 計算題(10分) The differential amplifier of figure P6 is fabricated in a 0.18- μ m CMOS technology for which $\mu_n C_{ox} = 4\mu_p C_{ox} = 400~\mu$ A/V², and $|V_A'| = 10~\text{V/}\mu$ m. If the bias current $I = 200~\mu$ A and all transistors have a channel length twice the minimum and are operating at $|V_{OV}| = 0.2~\text{V}$. Please find 6-1 (5 分) WL of Q_1 and Q_2 . 6-2 (5 分) the differential voltage gain A_{d} . #### 7. 計算題(10分) Figure P7 shows that a bipolar differential amplifier with a bias current I = 0.5 mA utilizes transistors for which V_A = 50 V and β = 100. The collector resistances R_C = 5 k Ω and the mismatch $\triangle R_C$ between the collector resistances is within 10%. 7-1 (5 分) Find differential voltage gain A_d . 7-2 (5 分) Find the common-mode rejection ratio (CMRR). 注意:背面有試題 # 國立中央大學 110 學年度碩士班考試入學試題 所別: 電機工程學系碩士班 固態組(一般生) 共<u>3</u>頁 第<u>3</u>頁 電機工程學系 碩士班 系統與生醫組(一般生) 電機工程學系 碩士班 電波組(一般生) 科目: 電子學 本科考試禁用計算器 *請在答案卷(卡)內作答 ### 8. 計算題(15分) Figure P8 shows a generalized high-frequency equivalent circuit for the common-source amplifier. For the case of g_m = 2 mA/V, C_{gs} = 20 fF, C_{gd} = 5 fF, C_L = 30 fF, R'_{sig} = 10 k Ω , and R'_L = 20 k Ω . - 8-1 (5 分) Use the Miller approach to estimate the 3-dB frequency f_H . - 8-2 (5 $\hat{\beta}$) Use the method of open-circuit time constants to estimate the 3-dB frequency f_H . - 8-3 (5 %) Also, find the frequency of the transmission zero f_Z . Fig. P8 Fig. P9 #### 9. 計算題(15分) Figure P9 shows a feedback current amplifier formed by cascading an inverting voltage amplifier μ with a MOSFET Q. For the case of μ = 100 V/V, R_s = R_{id} = ∞ , R_1 = 10 k Ω , and R_2 = 90 k Ω ; For Q: g_m = 5 mA/V and r_0 = 20 k Ω . - 9-1 (5 分) Find the value of close-loop gain $A_f = I_O/I_S$. - 9-2 (5 分) Find the value of input resistance Rin. - 9-3 (5 分) Find the value of output resistance Rout.