央工程學系 · 五一组 科目:

電子學

共 2 頁 第 1 頁

1. (20%)

For the high-frequency equivalent circuit model of the n-channel MOSFET as shown in Fig 1, (1) derive a formula for the MOSFET f_T , assuming Cgd is small, (7%) (2) if the overlap component of Cgs is negligibly small and $C_{gs} \gg C_{gd}$, show that

$$f_T pprox rac{3}{2\pi L} \sqrt{rac{\mu_R I_D}{2C_{ox}WL}}$$
 (7%) (3) evaluate f_T for MOSFET with L=2 μ m operated at $(V_{gs}-V_t)$ =0.5 V, if $\mu_R=400~cm^2/V\cdot s$ (6%)

2. (20%)

(1) Find the equivalent hybrid- π model of the Darlington circuit as shown in Fig 2, assuming Q1 and Q2 have the same β , expressing the overall r_π^i and g_m^i values in terms of $r_{\pi 1}, r_{\pi 2}, g_{m 1}$ and $g_{m 2}$ (10%) (2) Understanding that the $r_{\pi 2}$ and $g_{m 2}$ of Q2 differ from $r_{\pi 1}$ and $g_{m 1}$ of Q1 in magnitudes, if $\beta \gg 1$, find a corresponding approximate hybrid- π model. (10%)

3. (28%)

For the OP-amplifier as shown in Fig 3 (a), if the voltage gain of the OP is modeled as

$$A_v(s) \equiv \frac{V_o(s)}{V_i(s)} = \frac{100}{(1 + \frac{s}{10})(1 + \frac{s}{103})} (V/V)$$

, the input impedance of the OP $\to \infty$, and the output impedance of the OP $\to 0$. (1) If this OP is employed in a feedback amplifier as shown in Fig 3 (b), what kind of feedback topologies (series-shunt, shunt-shunt, shunt-series, series-series) is utilized? (4%) If this OP is employed in a feedback amplifier as shown in Fig 3 (c), what kind of feedback topologies (series-shunt, shunt-shunt, shunt-series, series-series) is utilized (4%)?

For the following questions, consider the feedback amplifier shown in Fig 3(c) ONLY, and $R_1=1$ k Ω , $R_2=4$ k Ω . (2) Derive the DC voltage gain of the feedback amplifier shown in Fig 3(c) (7%). (3) What is the 3-dB bandwidth of the feedback amplifier shown in Fig 3(c) (5%)? (4) If $R_1=1$ k Ω , what should be R_2 if the designed feedback amplifier [as shown in Fig 3(c)] has a 90° phase margin? (8%)

央大學八十九學年度碩士班研究生入學試題卷

電機工程學系 古、丁組 科目:

電子學

共2頁 第2頁

4. (20%)

Consider the fully differential amplifier as shown in Fig 4. Assume the current source $I_{bias}=1mA$, thermal voltage $V_T=25mV$, the current source has a output impedance R_S of 50 k Ω , Q_1 and Q_2 are identical, $\beta_1=\beta_2=100$, $r_{o1}=r_{o2}=r_{\mu 1}=r_{\mu 2}=\infty$, $R_{C1}=R_{C2}=10k$ Ω , $R_{L1}=20$ $k\Omega$, $R_{L2}=5$ $k\Omega$. $R_{E1}=R_{E2}=50$ Ω . (1) Derive the differential mode voltage gain $\frac{V_O}{V_i}$. (6%) (2) Sketch the common mode half circuit. (6%) (3) If $R_{C1}=10.1$ k Ω and $R_{C2}=9.9$ k Ω , what is the input offset voltage ? (8%)

5. (12%)

Consider the domino logic circuit as shown in Fig 5(a), describe the boolean function O = f(A, B, C, D) (3%) and Y = f(A, B, C, D, E) (4%) when clock ϕ is high. Fig 5 (b) shows a typical static CMOS NAND gate, sketch a static CMOS logic circuit that realize the boolean function of Y = (AB+CD)E + FG (5%).

