立中央大學九十三學年度碩士班研究生入學試題卷

所別:電機工程學系碩士班 甲組 科目: 計算機組織

1. Machine X has a clock rate of 480 MHz and machine Y has a clock rate of 400 MHz. The following is the CPI (clock cycle per instruction) and the percentage of instructions in gcc program.

Project Resilient Agency Company (Company Company Comp	The the percentage of mistractions in ge		
		CHEST	
Arithmetic	2	2	48%
Data transfer	3	2	33%
Conditional branch	3	4	17%
Jump	5	4	2%

(a) Compute the CPI for gcc of machine X and Y (b) Compute the MIPS (million instructions per second) for gcc in Machine X and Y (6%)(c) Which machine shall be chosen to run gcc in terms of execution time? Discuss your decision (4%)

2. Exaplin the following three addressing modes used in computer. Also explain the advantages and disadvantages of using (b) and (c)

(a) Immediate addressing (b) Base or displacement addressing (4%)(c) PC-relative addressing (6%)(6%)

3.(a) Use the block diagram of 1-bit full adder (Fig.3a) as a basic block to construct a 16-bit ripple adder of unsigned number (S=A+B). Indicate the critical path in this design (b) Add some logic blocks to the design of ripple adder so that it can do 2's complement substraction (S=A-B=A+(-B)

(c) Using 4-bit carry lookahead blocks (Fig.3b) and/or other necessary logic blocks to form a 16-bit carry lookahead adder. Draw the block diagram and all necessary inputs and outputs. Indicate the critical path of the addition operation

4.(a) Here is a series of address references given as word addresses: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17. Assuming a direct-mapped cache with 16 one-word blocks that is initially empty, label each reference in the list as a hit or a miss and show the final contents of the cache.

(b) Using the series of references given in (1), show the hits and misses and final cache contents for a directmapped cache with four-word blocks and a total size of 16 words. (8%)

(5%)

國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第之頁

所別: 電機工程學系碩士班 甲組 科目: 計算機組織

5.(a) What are the main advantages and disadvantages of pipeline? What is pipeline hazard? (8%)

(b) A pipeline machine has four stages, ie., an instruction consists of four phases (e.g., instruction fetch, instruction decode, operand fetch and execute); Stage 1 needs 80 nanoseconds (ns); Stage 2 needs 50 nanoseconds, and so on. The pipeline is shown as follows:

How much time is the pipeline machine required to complete ten instructions?

(8%)

(c). How much time is the pipeline machine required to complete one hundred instructions?

(8%)

6. Consider the following computer system:

- -- A CPU that sustains 300 million instructions per second and average 50000 instructions in the operating system per I/O operations.
- -- A memory backplane bus capable of sustaining a transfer rate of 100MB/sec.
- -- SCSI-2 controllers with a transfer rate of 20MB/sec and accommodating up to seven disks.
- -- Disk drives with a read/wtite bandwidth of 5MB/sec and an average seek plus rotational latency of 10ms. If the workload consists of 64-KB reads (where the block is sequential on a track) and the user program needs 100000 instructions per I/O operation, find
- (a) The maximum sustainable I/O rate.

(5%)

(b) The number of disks and SCSI controllers required. Assume that the reads can always be done on an idle disk if one exists (ignore disk conflicts.) (5%)

