
V

所別:電機工程學系碩士班 丙組(一般生)科目:信號與系統

Question 1: (25%)

Please use Laplace transform to solve the current i(t) in the following circuit, when the switch is closed at t=0 with $V_c(0)=1$ V.

Question 2: (25%)

When the input to an LTI (Linear time-invariant) system is

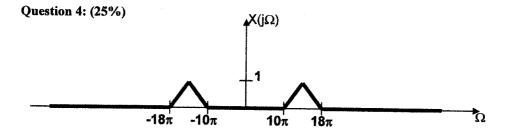
$$\mathbf{x}[\mathbf{n}] = \left(\frac{1}{2}\right)^{\mathbf{n}} \mathbf{u}[\mathbf{n}] + (2)^{\mathbf{n}} \mathbf{u}[-\mathbf{n} - 1]$$

, and its corresponding output is

$$\mathbf{y[n]} = 5\left(\frac{1}{2}\right)^{n}\mathbf{u[n]} - 5\left(\frac{2}{3}\right)^{n}\mathbf{u[n]}$$

- (a) Find the Z-transform, H(z), of the system function (i.e., H(z)=Y(z)/X(z), where X(z) and Y(z) are the Z-transforms of x[n] and y[n], respectively). (5%)
- (b) Plot the pole(s) and zero(s) of H(z) and indicate the region of convergence. (5%)
- (c) Find the impulse response, h[n], of the system. (5%)
- (d) Write a difference equation that is satisfied by the given input and output. (5%)
- (e) Is the system stable? (3%)
- (f) Is the system causal? (2%)

Question 3: (25%)


A moving-average system h[n] is defined as

$$h[n] = \begin{cases} \frac{1}{M_1 + M_2 + 1}, & -M_1 \le n \le M2 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Determine the Fourier transform, H(e^{jw}), of h[n]. (15%)
- (b) Plot the magnitude and phase of $H(e^{j\omega})$ for $M_1=0$ and $M_2=4$. (10%)

國立中央大學95學年度碩士班考試入學試題卷 共 二 頁 第 二 頁

所別:電機工程學系碩士班 丙組(一般生)科目:信號與系統

An analogous signal x(t) has the Fourier transform indicated in the figure. The signal is sampled to obtain the discrete time signal

$$x[n] = x(nT)$$

or equivalently

$$\mathbf{x}_{\mathrm{T}}(\mathbf{t}) = \sum_{-\infty}^{\infty} \mathbf{x}(\mathbf{n}\mathbf{T})\delta(\mathbf{t} - \mathbf{n}\mathbf{T}),$$

where T is the sampling period and $\delta(t)$ is the Dirac delta function.

- (a) Sketch the Fourier transform of $x_T(t)$ for T=1/10. (10%)
- (b) Can x(t) be recovered from x[n], when T=1/10? (5%)
- (c) How to recover x(t) from x[n]? (5%)
- (d) What is the maximum value of T so that x(t) can be recovered? (5%)