國立中央大學96學年度碩士班考試入學試題卷 共 2 頁 第 / 頁

所別:電機工程學系碩士班 甲組(一般生) 科目:電子學 甲組(學位在職生)

1. 計算題 (18分)

Calculate the voltage gains (v_o/v_i) for the following circuits:

- 1-1 Figure 1(a) shows a folded MOS amplifier formed by cascading two common source stages. Assuming Q_1 and Q_2 have the same transconductances of 1 mAV, bias current I=100 μ A, $V_{A_0}=|V_{A_0}|=2$ V, and the biasing current sources have an output resistance equal to that of Q_1 . Find its overall voltage gain. (6 分)
- 1-2 The MOSFETs in the circuit of Fig. 1(b) are matched, having $\mu_n C_{ox}$ (W/L)₁ = $\mu_p C_{ox}$ (W/L)₂ = 1.0 mA/V², threshold voltage |V_t| = 0.5 V, r_0 = ∞, and feedback resistor R_F = 100 kΩ . Find the overall voltage gain of the amplifier. (6 分)
- 1-3 Figure 1(c) shows a circuit for a voltage to current converter employing an op-amp with an open circuit voltage gain A = 1000. The MOSFET Q_1 has a transconductance g_m = 1.0 mA/V, a source resistor R_S = 1 kΩ, a drain resistor R_D = 10 kΩ and r_O = ∞. Find its closed-loop voltage gain. (6 \Re)

2. 計算題 (18分)

Figure 2 shows the topology of a two-stage CMOS operational amplifier. The design parameters are listed as follows: $(W/L)_1 = (W/L)_2 = 20 \mu m/0.8 \mu$ m, $(W/L)_3 = (W/L)_4 = 5 \mu m/0.8 \mu$ m, $(W/L)_6 = 10 \mu m/0.8 \mu$ m, $(W/L)_5 = (W/L)_7 = (W/L)_8 = 40 \mu m/0.8 \mu$ m, $I_{REF} = 90 \mu$ A, $V_{tn} = 0.7 \text{ V}$, $V_{tp} = -0.8 \text{ V}$, $\mu_n C_{ox} = 100 \mu A/V^2$, $|V_A| = 9 \text{ V}$ for all devices, $V_{DD} = V_{SS} = 2.5 \text{ V}$. The total capacitances between node D_2 and ground is $C_1 = 0.1 \text{ pF}$, and the total capacitances between the output and ground is $C_2 = 2 \text{ pF}$.

- 2-1 Find the dc open-loop voltage gain. (6 分)
- 2-2 Find the value of C_C that results in unit-gain frequency f_t = 10 MHz. And also find the corresponding frequencies of transmission zero f_Z and second pole $f_{\rho 2}$. (6 分)
- 2-3 If a resistor R is placed in series with C_c , find the value of R to obtain the transmission zero to be located at infinite frequency. (6 $\hat{\sigma}$)

3. 計算題與簡答題 (14分)

Figure 3 shows a second order filter which is realized using the op-amp RC resonator. K is the voltage gain of buffer amplifier. The design parameters of this filter are listed as follows: $R_1 = R_2 = R_3 = R_5 = 13.25 \text{ k}\Omega$; $R_6 = 265 \text{ k}\Omega$; $C_4 = C_6 = 1.2 \text{ nF}$.

- 3-1 Please identify the filter type. (2分)
- 3-2 What are the equivalent inductor value $\it L$ and pole Q factor of the resonator? (6 $\,$ $\!\!$ $\!\!$)
- 3-3 What are the pole frequency ω_0 and its 3-dB bandwidth of this filter? (6 \Re)

注:背面有試題

4. 設計題 (10分)

Fig. 4 shows a NMOS network of a static CMOS logic gate with five input signals A, B, C, D, E and output node F. Design and complete the full transistor circuit for this static CMOS logic gate to perform a complemented function. (10 分)

國立中央大學96學年度碩士班考試入學試題卷 共 2 頁 第 2 頁

所別:電機工程學系碩士班 甲組(一般生) 科目:電子學 甲組(學位在職生)

5. 設計題 (10分)

Design a complementary CMOS gate to perform the logic function C_i as shown in Fig. 5. ($10\ \%$)

6. 設計題 (12分)

Figure 6 shows a multi-output domino logic circuit. Can you find out the output logic functions of C_3 , C_2 and C_1 ? (12 %)

7.<u>計算題 (8 分)</u>

Determine the dynamic power dissipated for a typical CMOS clock driver with a 3 pF capacitance loading when operated at a frequency of 400 MHz and V_{DD} is 2.5 volts. (8 分)

8. 說明題 (10分)

Draw a PN junction cross-section view includes the electrical field, potential voltage and positive/negative charges in the junction. (10 分)

Fig. 6