所别: 資工類 共ご頁 第一頁

離散數學與線性代數 科目:

本科考試禁用計算器

*請在答案

卡 內作答

每題五分

- Which one of these is a proposition?
 - (a) You shall not pass! (Curtesy of The Lord of the Rings)
 - (b) What time is it?
 - (c) I have a pen, I have a apple. Uh! Apple-Pen!
 - (d) 4 + x = 5.
 - (e) The moon is made of green cheese.
- 2. Which of the following statement about a bijection function is incorrect?
 - (a) If $f: A \to B$ is injective, then the inverse function, f^{-1} , always exists and $f \circ f^{-1} = f^{-1} \circ f = I$.
 - (b) If f is bijective, then f is both injective and surjective.
 - (c) If a function is strictly increasing or strictly decreasing, it is a bijection.
 - (d) An identity function is bijective.
 - (e) No matter two sets A and B are finite, countably infinite, or uncountable, A and B are said to be of the same size if and only if there is a bijective function $f: A \to B$.
- Given two arbitrary uncountable sets A and B, the set A B is
 - (a) finite.
 - (b) countably infinite.
 - (c) uncountable.
 - (d) All of the above are possible.
 - (e) Not all of the above are correct.
- What is the next largest 4-combination of $\{1, 2, 3, 4, 5, 6\}$ after $\{1, 2, 5, 6\}$?
 - (a) {1, 3, 4, 5}.
 - (b) {2, 3, 4, 5}.
 - (c) $\{1, 3, 5, 6\}$.
 - (d) {1, 2, 6, 6}.
 - (e) None of the above.
- The quick multiplication algorithm using the idea of divide-and-conquer can compute the product $c \cdot d$ of two 2n-digit base-b numbers in time complexity
 - (a) $\Theta(n)$.
 - (b) $\Theta(n^{\log_2 3})$.
 - (c) $\Theta(n^{\log_{\mathbb{R}} 2})$.
 - (d) $\Theta(n \log_2 n)$.
 - (e) $\Theta(n^2)$.

所別: 資工類

共 5 頁 第 2 頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案. 卡 內作答

6. Let $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ be the matrix to represent a binary relation **R** on a

four-elements set. Which of the following statements is true?

- (a) The reflexive closure of R is an equivalence relation.
- (b) There are eight 1's in the matrix that represents the symmetric closure of R.
- (c) The directed graph representation of R is connected.
- (d) The directed graph of R does not have a strongly connected component..
- (e) None of the above.
- 7. Suppose x and y are integer numbers, and we define the following predicates:

$$D(x, y)$$
: y is a multiple of x; $E(x)$: x is even;

Which of the following clauses are correct interpretations of the logical statement:

$$\forall x, y, (E(x) \land (\neg E(y)) \rightarrow ((\neg D(x, y)) \land (\neg D(y, x)))$$

- (a) All even integers can only be a multiple of another non-even integer.
- (b) If y is a multiple of x, it is not possible that x is odd and y is not even. .
- (c) It is possible that some not-even number is not a multiple of some odd number..
- (d) Some odd integer is not equal to an even integer.
- (e) None of the above.
- 8. We implement a merge sort algorithm to sort n items. The algorithm will divide the set into 2 roughly equal-size halves, and <u>merge</u> the 2 halves after each half set is recursively sorted. Because the item comparison is complicated, the <u>merge</u> process takes $\theta(m\sqrt{m})$ steps for input size m. What is the time complexity for this algorithm? (a) $\theta(n \log n)$ (b) $\theta(n)$ (c) $\theta(n^2)$ (d) $\theta(n\sqrt{n})$ (e) $\theta(n\sqrt{n} \log n)$
- 9. If number of nodes is more than 3, which statement about graph is not true?
- (a) Complete graphs have Hamilton circuit.
- (b) Complete bipartite graphs have more edges than nodes.
- (c) Any strongly connected directed graph has circuit.
- (d) There is a length-n path between any 2 nodes in n-dimension hypercube.
- (e) All connected undirected graph have a subgraph as a tree.
- 10. About formal proof, which following statements is true?
- (a) If predicates form a partial order set, they can be proved by mathematic induction.
- (b) Diagonalization proof can only be applied on finite sets.
- (c) Two sets are equal if and only if they are mutual subsets.

注:背面有試題

所別: 資工類

共5頁 第3頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案 卡 內作答

- (d) Equal number of degree-n nodes is sufficient to prove graph isomorphism.
- (e) Halting problem is a contradiction proof of the existence of intractable problems.

多重選擇題 (每一樣項答對給 1 分、答錯扣 1 分、不答 0 分)

11. Which of the following vectors compose a basis for the column space of the matrix A?

$$A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1\\2\\-3\\4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3\\0\\1\\6 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1\\1\\-2\\1 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 6\\-1\\1\\3 \end{bmatrix}$$

12. We have five lists of polynomials in $P_3(R)$. Select the list in which the first polynomial can be expressed as a linear combination of the other two.

(a)
$$x^3 - 3x + 5$$
, $x^3 + 2x^2 - x + 1$, $x^3 + 3x^2 - 1$

(b)
$$4x^3 + 2x - 6$$
, $x^3 - 2x^2 + 4x + 1$, $3x^3 - 6x^2 + x + 4$

(c)
$$-2x^3 - 11x^2 + 3x + 2$$
, $x^3 - 2x^2 + 3x - 1$, $2x^3 + x^2 + 3x - 2$

(d)
$$x^3+x^2+2x+13$$
, $2x^3-3x^2+4x+1$, x^3-x^2+2x+3

(e)
$$x^3 - 8x^2 + 4x$$
, $x^3 - 2x^2 + 3x - 1$, $x^3 - 2x + 3$

13. Determine which of the following systems of linear equations has a solution

(a)
$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 = 2\\ x_1 + x_2 + 2x_3 = 1\\ 2x_1 + 2x_2 + x_3 + 2x_4 = 4 \end{cases}$$

(b)
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 2 \end{cases}$$

(c)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ x_1 + x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 = 3 \end{cases}$$

注:背面有試題 意:背面有試題

所別: 資工類

共5頁 第1頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案 卡 內作答

(d)
$$\begin{cases} x_1 + x_2 + 3x_3 - x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 - 2x_2 + x_3 - x_4 = 1 \\ 4x_1 + x_2 + 8x_3 - x_4 = 0 \end{cases}$$

(e)
$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ 2x_1 + x_2 + 2x_3 = 3 \\ x_1 - 4x_2 + 7x_3 = 4 \end{cases}$$

- 14. Which of the following statements are true?
 - (a) If B is a matrix obtained by interchanging two rows or two columns of A, then det(B)=det(A).
 - (b) If B is a matrix obtained by multiplying each entry of some row or column of A by a scalar, then det(B)=det(A).
 - (c) If B is a matrix obtained from A by adding a multiple of some row to a different row (or a multiple of some column to a different column), then det(B)=det(A).
 - (d) The determinant of an upper triangular nxn matrix is the product of its diagonal entries.
 - (e) If Q is an invertible matrix, then $det(Q^{-1})=[det(Q)]^{-1}$
- 15. Let β and γ be the standard ordered bases for Rn and Rm, respectively. For the following transformations: T:Rⁿ \rightarrow R^m, choose the option in which $[T]_{\beta}^{\gamma}$ is correct.

(a) T:R²
$$\rightarrow$$
 R³ defined by T(a₁, a₂)=(2a₁-a₂, 3a₁+4a₂, a₁), $[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & -1 \\ 3 & 2 \\ 1 & 0 \end{pmatrix}$

(b) T:R³
$$\rightarrow$$
 R² defined by T(a₁, a₂, a₃)=(2a₁+3a₂-a₃, a₁+a₃), $[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

(c) T:R³
$$\rightarrow$$
 R defined by T(a₁, a₂, a₃)=2a₁+a₂-3a₃, $[T]_{f}^{\gamma}$ =(2, 1, -3)

(d) T:R³
$$\rightarrow$$
 R³ defined by T(a₁, a₂, a₃)=(2a₂+a₃, -a₁+4a₂+5a₃, a₁+a₃),

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

$$T:R^{n} \to R^{n} \text{ defined by } T(a_{1}, a_{2}, ..., a_{n}) = (a_{1}, a_{1}, ..., a_{1}), \ [T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}_{n \times n}$$

注:背面有試題

所別: 資工類

共<u>多</u>頁 第<u>5</u>頁

科目:

離散數學與線性代數

本科考試禁用計算器

*請在答案 卡 內作答

- 16.If A is an invertible and diagonalizable $n \times n$ matrix, then
 - (A) A and A^{T} have the same eigenvalues.
 - (B) A and A^{T} have the same eigenvectors.
 - (C)A and A^{-1} have the same eigenvectors.
 - $(D)A^{T}$ is diagonalizable.
 - $(E)A^{-1}$ is diagonalizable.
- 17. If A is a $n \times n$ matrix with real entries, then
 - (A) A has n eigenvalues exactly.
 - (B) A has n eigenvectors exactly.
 - (C)A has n eigenspaces exactly.
 - (D) The bases of all A's eigenspaces are not always linearly independent.
 - (E) If A has complex eigenvalues, then A must has complex eigenvectors.
- 18. If A can be QR factorized (i.e., A = QR), then
 - (A) A has linearly independent eigenvectors.
 - (B) The columns of Q are orthonormal basis for Col A.
 - $(C) Q^T Q = I$ (identity matrix).
 - $(D) \widetilde{A} = QR \text{ and } Q^{T}Q = I \Rightarrow Q^{T}A = Q^{T}QR \Rightarrow Q^{T}A = R \Rightarrow QQ^{T}A = QR = A \Rightarrow QQ^{T} = I.$
 - (E) \mathbf{R} is an upper triangular invertible matrix with positive entries on its upper triangle.
- 19. If A is a $m \times n$ matrix; A x = b is an inconsistent system and has a least-square solution \hat{x} .
 - $(A) \hat{\boldsymbol{\chi}} = (A^T A)^{-1} A^T \boldsymbol{b}.$
 - (B) \hat{x} is a unique solution.
 - (C) If $A^T A$ is not invertible, then the system has no solution.
 - $(D)A\hat{x}$ is not always in Col A.
 - (E) $b A \hat{x}$ is orthogonal to every row of A.
- 20. If C is a covariance matrix, then
 - (A) C is a symmetric matrix.
 - (B) C has real entries and then has real eigenvalues.
 - (C) C has no negative eigenvalues.
 - (D) C can always be decomposed into AA^{T} , where A is a matrix.
 - (E) C can always be decomposed into PDP^{T} , where D is a diagonal matrix.