國立中央大學 96 學年度碩士班考試入學試題卷

共2頁第1頁

所別: <u>資訊工程學系碩士班</u> <u>軟體工程研究所碩士班</u>

科目:離散數學與線性代數

※請務必按照題號次序寫在答案紙上,否則將嚴重失分。

1. (10%) Suppose x, y represents people. Let L(x, y) be the predicate of "x likes y," F(x, y) be the predicate of "x is a friend of y," H(y) be the predicate of "y is a happy person." Choose the correct logic statement(s) which have the same meaning as the sentence —A happy person is a person liked by some of his friends.

(a) (4%) (single or multiple choice, no points will be awarded if only partially correct)

- (i) $\forall x (\forall y, (L(y, x) \land F(x, y)) \rightarrow H(x)).$
- (ii) $\exists x (\forall y, (L(x, y) \land F(y, x)) \rightarrow H(x)).$
- (iii) $\forall x (\forall y, (L(y, x) \rightarrow (\neg F(x, y))) \rightarrow \neg H(x)).$
- (iv) $\forall x (\exists y, (L(y, x) \land F(y, x)) \rightarrow H(x)).$
- (v) none of the above.
- (b) (6%) Suppose there are 10 persons in the universe of discourse, all are friends of each other. Assume every person likes at least 5 other persons in this group, derive a close upper bound of the number of **unhappy** person according to the definition of happy person in (a).
- 2. (15%) Suppose there is an evaluation process E used to select a set of committee from a set of candidates.

Process E will first checks (1) if the number of candidates is 2. If so then make 1 comparison step to qualify 1 committee member. (2) Else if the number of candidates is 1, then do 1 qualification step to qualify that candidate. (3) Else if the number of input candidates is greater than 2, randomly select $\lceil 1/3 \rceil$ of them and initiate the process E for the reduced candidate set; randomly select another $\lceil 1/3 \rceil$ of the input candidates and feed them into another process E of evaluation. (random selection for reduced candidate set does not cost anything in terms of the complexity we consider)

- (a) (7%) Suppose each comparison or qualification counts for 1 step, and the number of initial candidates is n, derive a recurrence definition for the number of steps S(n) that process E takes to evaluate all n candidates.
- (b) (8%) Estimate the complexity order (O(...)) of S(n).

(還有第二頁)

注:背面有試題

國立中央大學 96 學年度碩士班考試入學試題卷

共2頁 第2頁

所別: <u>資訊工程學系碩士班</u> 軟體工程研究所碩士班

科目:離散數學與線性代數

※ 請務必按照題號次序寫在答案紙上,否則將嚴重失分。

- 3. (15%) Let A be a set and let $f: A \rightarrow A$ be a function. For $x, y \in A$, define $x \sim y$ if f(x) = f(y). (a) (5%) Prove that \sim is an equivalence relation on A.
 - (b) (5%) For A = R and $f(x) = \lfloor x \rfloor$, find the equivalence classes of 0, $\frac{7}{5}$, $-\frac{9}{16}$
 - (c) (5%) Suppose $A = \{1, 2, 3, 4, 5, 6\}$ and $f = \{(1,2), (2,1), (3,1), (4,5), (5,6), (6,1)\}$. Find all equivalence classes.
- 4. (10%) Let a be any real number. Show that two sets (0, 1) and (a, ∞) have the same cardinality.
- 5. (12%) Without multiplying matrices, find the four fundamental subspaces, *i.e.*, column space (image) and null space (kernel) of A and A^T, if you know

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & -3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

6. (13%) Use Cramer's Rule to solve Ax = b. Also find the inverse matrix $A^{-1} = C^{T}/\det A$.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \text{ is } \begin{bmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Why is the solution x in the first part the same as column 3 of A^{-1} ? Which cofactors are involved in computing that column x?

- 7. (10%) (a) (7%) Find a real general solution of linear system $x' = \begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} x$. (b) (3%) Describe the shapes of solution trajectory.
- 8. (10%) (a) (7%) Find a singular value decomposition of matrix $\mathbf{A} = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$. (b) (3%) Show that the eigenvalues of $\mathbf{A}^T \mathbf{A}$ are all nonnegative.
- 9. (5%) If matrix *A* has linearly independent columns and can be factorized into *QR*, where *Q* has orthonormal columns, show that *R* is an upper triangular matrix with positive entries on its diagonal.

(後面沒有題目了)