國立中央大學 108 學年度碩士班考試入學試題

所別: 通訊工程學系碩士班 不分組(一般生)

共2頁 第1頁

科目: 通訊系統

本科考試禁用計算器

1. (50%) For a baseband communication system as shown below, where w(t) is the additive white Gaussian noise with a power spectral density $N_0/2$ and p(t)/h(t) denote the impulse responses of TX/RX filters, (a) plot the Fourier spectrum $A_{\delta}(f) = \Im\{a_{\delta}(t)\}$ in the range $|f| \le 2f_S$ when $A(f) = \Im\{a(t)\} = \begin{cases} 1, & |f| \le 0.4f_S \\ 0, & otherwise \end{cases}$ (5%); (b) find the values f_{pass}

and f_{stop} in $P(f) = \begin{cases} 1, & f \leq f_{pass} \\ 0, & f > f_{stop} \end{cases}$ such that $s(t) = K \cdot a(t)$ and $f_{stop} - f_{pass}$ is

maximized for the signal a(t) given in (a) (5%); (c) plot the waveform r(t) in the range $0 \le t \le 5 \cdot T_s$ when $h(t) = p(t) = \begin{cases} 2, & 0 \le t \le 0.5T_s \\ 0, & otherwise \end{cases}$, $N_0 = 0$ and

 $\{a(n \cdot T_S) | n = 0 \sim 4\} = \{1, -1, -3, 3, -1\}$ (5%); (d) find the received signal power $(E\{r^2(t)\})$

in terms of N_0 when $h(t) = \begin{cases} 2, & 0 \le t \le 0.5T_s \\ 0, & otherwise \end{cases}$ and s(t) = 0 (5%); (e) find the values

 A_0 , t_0 and $E\{n_k^2\}$ in $r[k] = A_0 \cdot a(k \cdot T_S) + n_k$ such that A_0 is maximized when

 $h(t) = p(t) = \begin{cases} 2, & 0 \le t \le 0.5T_S \\ 0, & otherwise \end{cases}$ and $N_0 \ne 0$ (12%); (f) find the optimal decision rule for

r[k] given in (e) when $a(k \cdot T_s) \in \{-3,-1,1,3\}$ with equal probability (5%); (g) find the decision error probability for the decision rule given in (f) in terms of A_0 , N_0 and Q(x) (8%); (h) find the data rate (bps: bit-per-sec) of the system when

 $a(k \cdot T_s) \in \{-7, -5, -3, -1, 1, 3, 5, 7\}$ (5%).

$$\left(\text{Hint}: Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(\frac{-y^{2}}{2}\right) dy, \quad \Pr(n > A) = Q\left(\frac{A}{\sigma}\right), \quad n \sim N(0, \sigma^{2})\right)$$

$$\left(\text{Hint: } s(t) = a_{\delta}(t) * p(t) = \sum_{n} a(n \cdot T_{S}) \cdot p(t - n \cdot T_{S}), \quad \Im\{ \} : \text{Fourier Transform} \right)$$

注:背面有試題

國立中央大學 108 學年度碩士班考試入學試題

所別: 通訊工程學系碩士班 不分組(一般生)

共2頁 第2頁

科目: 通訊系統 本科考試禁用計算器

- 2. (8%) Consider the received FM signal $x(t) = A_c \cos(2\pi f_c t + 2\pi f_d \int^t m(\alpha) d\alpha) + n(t)$ where m(t) is the lowpass message signal with bandwidth W and n(t) is the AWGN with double-sided PSD $N_0/2$. For a fixed value of $\frac{A_c^2}{N_0 W}$, if we increase the value of f_d , will the SNR of the demodulated signal increase also? Please explain your answer.
- 3. (10%) An AM modulator operates with the message signal $m(t) = 4\cos(10\pi t) + 6\cos(30\pi t)$. The unmodulated carrier is $200\cos(600\pi t)$. The system operates with a modulation index of 0.8.
- (a) Write the equation for $m_n(t)$, the normalized signal with a minimum value of -1. (3%)
- (b) Determine $\langle m_n^2(t) \rangle$, the power in $m_n(t).(4\%)$
- (c) Determine the efficiency of the modulator. (3%)
- 4. (24%) Consider M-ary PSK (phase-shift keying) and M-ary FSK (frequency-shift keying).
- (a) For M=2, plot the receiver structures and find the bit error probabilities for both. (8%)
- (b) For $M=2^m$ where $m \geq 2$ is an integer, find the approximated symbol error probabilities versus E_s/N_0 for both (E_s is the energy per symbol). (8%)
- (c) For $M=2^m$ where $m \geq 2$ is an integer, find the approximated bit error probabilities versus E_b/N_0 for both (E_b is the energy per bit). Please compare the approximated bit error probabilities of PSK and FSK if we increase the value of m (8%).
- 5. (8%) Consider QPSK (quadriphase-shift keying) and 16-QAM (quadrature-amplitude modulation). Please compare their symbol error probabilities and null-to-null bandwidths in the case of the same data rate.

注意:背面有試題