國立中央大學 108 學年度碩士班考試入學試題

通訊工程學系碩士班 不分組(一般生) 所別:

共2頁 第1頁

科目: 工程數學(線性代數、機率)

本科考試禁用計算器

計算題

*計算題需計算過程,無計算過程者不予計分

- 1. (10%) Let A and B be 3×3 matrices with det(A) = 5 and det(B) = -6. Find the value of:
 - $(1) (5\%) \det(3AB)$
 - (2) (5%) $\det(A^{-1}B)$
- 2. (15%) Let x_1, x_2 , and x_3 be linearly independent vectors in \mathbb{R}^n and let

$$y_1 = x_1 + x_2$$
, $y_2 = 2x_3 - 2x_1$, $y_3 = 3x_2 + 3x_3$

Are y₁, y₂, and y₃ linearly independent? If it is true, please explain your reason; otherwise, please show that there are nontrivial linear combinations of y1, y2, y3 that equal 0.

- 3. (15%) Let A be an $m \times n$ matrix whose rank is equal to n and let c and d are column vectors in \mathbb{R}^n . If $A\mathbf{c} = A\mathbf{d}$, does this imply that \mathbf{c} must be equal to \mathbf{d} ? What if the rank of A is less than n? Explain your answers.
- 4. (10%) If A is a singular matrix, is it true that A has 0 as an eigenvalue? Please explain your answer.
- 5. (40%) If X and Y are random variables with joint probability density function (PDF) $f_{X,Y}(x,y)$, given by

$$f_{X,Y}(x,y) = \begin{cases} \lambda \mu e^{-(\lambda x + \mu y)}, & x \ge 0, y \ge 0 \\ 0, & otherwise \end{cases}$$

- (1) (6%) Please find the marginal probability density function $f_X(x)$.
- (2) (6%) Please find the mean of the random variable X.
- (3) (6%) Are the random variables X and Y independent? Please explain your answer.
- (4) (6%) Are the random variables X and Y uncorrelated? Please explain your answer.
- (5) (10%) Please find the cumulative density function (CDF) of a random variable W = Y/X.

國立中央大學 108 學年度碩士班考試入學試題

所別: 通訊工程學系碩士班 不分組(一般生)

共之頁 第少頁

科目: 工程數學(線性代數、機率)

本科考試禁用計算器

(6) (6%) Please find the PDF of the random variable W = Y/X.

6. (10%) In a communication system, the number of packet arrivals is modeled as a Poisson random variable. X is a Poisson (α) random variable if the probability mass function (PMF) of X has the form:

$$P_X(x) = \begin{cases} \frac{\alpha^x e^{-\alpha}}{x!}, & x = 0,1,2, \dots \\ 0, & otherwise \end{cases}$$

The communication system has on average one arrived packet per second.

- (a) (5%) Please elaborate on the meaning of the parameter α in the PMF of X.
- (b) (5%) What is the probability that there are no packets arrived from the time t=2 seconds to the time t=3 seconds?

注意:背面有試題