國立中央大學九十學年度碩士班研究生入學試題卷

所別: 大氣物理研究所 不分組 科目: 近代物理學 共 / 頁 第 / 頁

- 1. It is possible for the electrons in a medium to move at a speed faster than the speed of light. Does it contradict special relativity? (5%)
- 2. (a) The Doppler effect in sound varies depending on whether the source, or the observer, or both are moving. Does it violate the principle of relativity? (5%)
 - (b) An observer moves at a speed u perpendicular to a line between him and a light source. The source emits a wave of light with frequency v_0 .

 What is the observed light frequency v? (5%)
- 3. The temperature of the sun's surface is about 6000K and the sun's radius is $7 \times 10^8 m$. Light from the sun arrives at the earth, an average of $1.5 \times 10^{11} m$ away. Assume that the sun radiates as a blackbody, and that the earth acts as a blackbody as both absorber and emitter.
 - (a) Calculate the surface temperature of the earth. (5%)
 - (b) Assume sunlight is monochromatic with wavelength 6×10^{-5} cm. How many photons per cubic meter are there near the earth? (5%)
 - [hint: the Stefan-Boltzmann constant is $5.67 \times 10^{-8} Wm^{-2} K^{-4}$ and the Planck constant is $6.63 \times 10^{-34} J \cdot \text{sec}$]
- 4. Show that a free electron cannot absorb a photon. (10%)
- 5. The size of a typical atom is 10^{-8} cm. Estimate the energy of an electron confined in an atom. (5%)
- 6. For a particle of rest mass m and kinetic energy E_k ,
 - (a) Find the de Broglie wavelength of the particle. (5%)
 - (b) If a photon has the same wavelength, can anything be said about how their momenta compare? (5%)
- 7. A particle has mass m in an infinite one-dimensional potential well of width a,
 - (a) Calculate the expectation values of linear momentum p and p^2 in the ground state and first excited state. (10%)
 - (b) If the particle is in the first excited state, calculate the probability that the particle will be found between x = a/3 and a/2, and compare it with the classical prediction. (10%)
 - (c) If the particle is in excited state with large quantum number (n >> 1). Calculate the probability that the particle will be found in an interval Δx and compare it with the classical prediction. (5%)
- 8. If we do not consider electron spin, we use three quantum numbers to describe an atomic electron, why? (5%)
- 9. How many electrons can occupy a d subshell? (5%)
- 10. The number of particles in each state of energy ε at the temperature T is called the distribution function. There are three distribution functions,

 $f(\varepsilon) = Ae^{-\varepsilon/kT}$ for a classical gas, $f(\varepsilon) = 1/(Be^{\varepsilon/kT} - 1)$ for a gas of bosons, and $f(\varepsilon) = 1/(Ce^{\varepsilon/kT} + 1)$ for a gas of fermions, where A, B and C are normalization constants.

- (a) At the same temperature, which gas will it exert the greatest pressure? The least pressure? Why? (10%)
- (b) What is the average energy of an electron gas at T = 0K? (5%)

