國立中央大學九十學年度碩士班研究生入學試題卷

所別: 太空科學研究所 不分組 科目: 近代物理 共 / 頁 第 / 頁

1. A photon collides with a stationary electron to produce an electron-positron pair, $\hbar\omega + e^- \rightarrow e^- + (e^- + e^+)$.

Find the minimum energy for the photon in terms of electron rest energy. (5%)

- 2. An observer moves at a speed u away from a source.
 - (a) Derive the formulas for the Doppler effect both in light and in sound. (10%)
 - (b) When $u \ll c$, are the formulas in (a) reduced to the same form? (5%)
- 3. A metal surface illuminated by $5 \times 10^{14} Hz$ light emits electrons whose maximum kinetic energy is 0.5eV. The same surface illuminated by $8.6 \times 10^{14} Hz$ light emits electrons whose maximum kinetic energy is 2eV. Find Planck's constant and the work function of the surface. (10%)
- A particle of mass m in a box l wide,
 - (a) Find the uncertainty in position for the particle in the ground state and first excited state. (10%)
 - (b) Find the uncertainty in momentum for the particle in the ground state and first excited state. (10%)
 - (c) Find the limit of the uncertainty in position and in momentum for large quantum number. (10%)
 - (d) Calculate the expectation value of the product of momentum and position < px > for the particle in the first excited state. Is it the same as the expectation value < xp >? (10%)
- 5. From the quantum theory of the hydrogen atom, what are the angles between its orbital angular momentum vector \bar{L} and the z-axis for orbital quantum number l = 1? and for l = 2? (10%)
- Consider a system of three electrons in states specified by quantum numbers n₁, n₂ and n₃. Let the one-electron states be ψ_m (r₁), ψ_{m₂} (r₂) and ψ_{m₃} (r₃).
 By using the one-electron states, construct a state of the system that is antisymmetric with respect to an interchange of any two electrons. (5%)
- 7. A gas of 4 particles, each of which can occupy a state of energy $E_n = n\varepsilon$, where n is an integer (0,1,2...). The total energy of the system is $E = 9\varepsilon$. List all possible macrostates and determine the number of microstates associated with each macrostate, for (a) a gas of classical atoms, (b) a gas of bosons, and (c) a gas of fermions. (15%)