國立中央大學 113 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

第1頁/共2頁

科目: 高等微積分

*本科考試禁用計算器

以下全部試題,包含子題,皆為計算或證明題。作答需給出清晰,準確之論述與計算過程, 論述之完整性將納入評分。若無任何計算過程,該題將不予計分。

Problem 1. We consider the function $f: x \mapsto \frac{\ln x}{x-1}$ defined for all $x \in (0,1) \subset \mathbb{R}$.

- 1.) (5 points) For all $n \in \mathbb{N}$, calculate $\int_0^1 x^n \ln x dx$.
- 2.) (5 points) Calculate $\lim_{x\to 1} f(x)$.
- 3.) (10 points) Show that f is integrable on (0,1) and calculate $\int_0^1 f(x)dx$.

Problem 2. Let $n \in \mathbb{N}$.

• $\mathcal{M}_n(\mathbb{R})$ denotes the vector space of $n \times n$ matrices with real coefficients.

• For all
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$.

• For all $A \in \mathcal{M}_n(\mathbb{R})$, we define

$$||A||_M := \sup_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{||Ax||}{||x||}.$$

- 1.) (5 points) Consider the particular case $\tilde{A} = \begin{pmatrix} -3 & 1 \\ 0 & 2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Calculate $\|\tilde{A}\|_M$.
- 2.) (5 points) Following the previous question, calculate $\sup_{\substack{y \in \mathbb{R}^2 \\ \|y\|=1}} \|\tilde{A}y\|^2$ by using the Lagrange multipliers.

In the next questions, we consider the general cases $A \in \mathcal{M}_n(\mathbb{R})$.

- 3.) (5 points) Show that $||A||_M = \sup_{\substack{y \in \mathbb{R}^n \\ ||y||=1}} ||Ay||$.
- 4.) (5 points) Show that for all matrices $B \in \mathcal{M}_n(\mathbb{R})$, $||AB||_M \leq ||A||_M ||B||_M$.
- 5.) (10 points) Show that the set of invertible matrices GL(n) is an open set in $\mathcal{M}_n(\mathbb{R})$.

國立中央大學 113 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

第2頁/共2頁

科目: 高等微積分

*本科考試禁用計算器

Problem 3. Let $(E, \|\cdot\|)$ be a normed space. We recall that a series $\sum_{n} x_n$ is said to be absolutely convergent if the numerical series $\sum_{n} \|x_n\|$ is convergent.

- 1.) (5 points) Is the series $\sum_{n} \frac{1}{n}$ convergent? Justify your answer and calculate its sum if you have a positive answer.
- 2.) (5 points) Is the series $\sum_{n} \frac{(-1)^{n-1}}{n}$ convergent? Justify your answer and calculate its sum if you have a positive answer.
- 3.) (8 points) Show that if $(E, \|\cdot\|)$ is complete, then any absolutely convergent series converges in E.
- 4.) (6 points) Let $(y_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $(E, \|\cdot\|)$. Show that there exists a subsequence $(y_{n_k})_{k\in\mathbb{N}}$ of $(y_n)_{n\in\mathbb{N}}$ such that $\forall n\in\mathbb{N}, \|y_{n_k}-y_{n_{k+1}}\|\leq 2^{-k}$.
- 5.) (6 points) We assume that any absolutely convergent series converges in E. Show that $(E, \|\cdot\|)$ is complete.

Problem 4. Let $a, b, K \in \mathbb{R}$ with a < b and K > 0. We say a real-valued function g defined on [a, b] is K-Lipschitz continuous if

$$\forall x, y \in [a, b], |g(x) - g(y)| \le K|x - y|.$$

Consider the sequence of real-valued functions $(f_n)_{n\in\mathbb{N}}$ defined on [a,b]. We assume that for all $n\in\mathbb{N}$, f_n is K-Lipschitz continuous and the sequence $(f_n)_{n\in\mathbb{N}}$ converges pointwisely to f on [a,b]. That means,

$$\forall x \in [a, b], \ f(x) = \lim_{n \to +\infty} f_n(x).$$

- 1.) (5 points) Show that the function f is K-Lipschitz continuous on [a, b].
- 2.) (15 points) Show that $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f on [a,b].

	試題結束	
--	------	--

注:背面有試題