國立中央大學 114 學年度碩士班考試入學試題

系所: 數學系碩士班 數學組(一般生)

第/頁/共/頁

科目: 高等微積分

*本科考試禁用計算器

以下全部試題,包含子題,皆為證明題。作答需給出清晰,準確之論述 與證明過程,論述之完整性將納入評分。

Let \mathbb{N} be the natural numbers and \mathbb{R} be the set of real numbers.

- 1. (15 points) We say that $A \subseteq \mathbb{R}^n$ is compact if every open cover of A has finite subcover. Show that every compact set in \mathbb{R}^n is closed by the definition.
- 2. (15 points) Let K be compact metric space and f_n be continuous function on K for all $n \in \mathbb{N}$. If $\{f_n\}$ converges uniformly on K, show that $\{f_n\}$ is equicontinuous on K. That is, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f_n(x) f_n(y)| < \varepsilon$ whenever $d(x, y) < \delta, x, y \in K$, and $n \in \mathbb{N}$.
- 3. (15 points) Prove that a polynomial of degree n is uniformly continuous on $\mathbb R$ if and only if n=0 or 1.
- 4. (15 points) Suppose that f is differentiable on \mathbb{R} . If f(0) = 2 and $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$. Prove that $|f(x)| \leq |x| + 2$ for all $x \in \mathbb{R}$.
- 5. (20 points) For $0 < x < \infty$, define

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Prove that (a) (10 points) the integral converges for $0 < x < \infty$;

- (b) (10 points) the equation $\Gamma(x+1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 6. (20 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Investigate the continuity and differentiability of f at (0,0).