國立中央大學 114 學年度碩士班考試入學試題

系所: 數學系碩士班 數學組(一般生)

第1頁/共2頁

數學系碩士班 應用數學組(一般生) 數學系碩士班 應用數學組(在職生)

科目: 線性代數

*本科考試禁用計算器

Do all problems. Show your work.

1. (10pts). Let
$$A = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} \in M_{2\times 2}(\mathbb{R}), S = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\} \subset M_{2\times 2}(\mathbb{R}).$$

- (a) Determine whether A is in the span of S.
- (b) Determine whether S is a linearly independent subset of $M_{2\times 2}(\mathbb{R})$.
- 2. (10pts) Let V be a vector space, and let $T:V\to V$ be a linear transformation. Prove that $T^2=T_0$ (the zero transformation) if and only if $R(T)\subseteq N(T)$

[Notations: $\mathcal{N}(T)$:= null space of T, R(T):= range of T]

- 3. (10pts) Let $A, B \in M_{n \times n}(F)$.
 - (a) Show that if A is invertible then so is A^t , and $(A^t)^{-1} = (A^{-1})^t$.
 - (b) Show that if A and B are similar, then $\det(A \lambda I) = \det(B \lambda I)$, $\lambda \in F$.
- 4. (10ts) Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \\ 2 & 3 & -1 \end{pmatrix}$. Compute $\det(A)$, the rank of A, and the inverse of A if exists.

國立中央大學 114 學年度碩士班考試入學試題

系所: 數學系碩士班 數學組(一般生)

第2頁 / 共2頁

數學系碩士班 應用數學組(一般生) 數學系碩士班 應用數學組(在職生)

科目: 線性代數

*本科考試禁用計算器

5. (25pts) Let
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix} \in M_{3\times3}(\mathbb{R}).$$

- (a) Determine all eigenvalues of A.
- (b) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- (c) Find the minimal polynomial of A.
- (d) If possible, find a basis for \mathbb{R}^3 consisting eigenvectors of A.
- (e) If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D so that $Q^{-1}AQ = D$.
- 6. (15ts) Let $W \subset \mathbb{R}^4$ be the subspace of \mathbb{R}^4 generated by the three linearly independent vectors $w_1 = (1, 0, 1, 0), w_2 = (1, 1, 1, 1), \text{ and } w_3 = (0, 1, 2, 1).$
- (10pts) (a) Apply Gram-Schmidt process to the set $\{w_1, w_2, w_3\}$ to obtain an orthonormal basis for W.
- (5pts) (b) Find a unit vector $v \in \mathbb{R}^4$ that is in the orthogonal complement $W^{\perp} \subset \mathbb{R}^4$ of W.
 - 7. (10pts) Let V be an inner product space, and let W be a finite dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$ but $\langle x, y \rangle \neq 0$.
 - 8. (10pts) Let T the a linear operator on the inner product space \mathbb{C}^2 defined by T(a,b)=(2a+ib,a+2b).
 - (a) Determine whether T is normal or not.
 - (b) Determine whether T is self-adjoint or not.