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. (9%) Let f(z) = (2% +1)% - sech(Inz). Then f'(1) =
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(9%) The region bounded by the curves y = 22 and z = y? is revolved about the line y = 1 to generate
a solid. Then the volume of the solid is equal to

o

(9%) The maximum value of f(z,y) = z? +42 + 4z — 6y on the domain defined by 22 +y? < 16 is equal
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. (9%) Let C be the triangle with vertices (0,0), (1,0), (1,2) oriented counter-clockwise. Then
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1. Let P be the intersection curve of the surface 22 = 2% + y? and the plane z = 22 + 3.
(i) (6%) Find the minimum distance from the origin (0,0, 0) to the curve P.
(ii) (6%) Find the maximum distance from the origin (0,0,0) to the curve P.

2. Prove Newton’s binomial theorem by the following steps: Let o € R that is not a non-negative integer.
Newton’s binomial theorem states that for any @ € (—1,1) the following equation holds:

1 +2)* = i (g) ", (1)
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where <(g> =1 and (2) = H ﬁ:g——‘_—l for any integer n > 1. Let f(z) be the right-hand side of (1).
k=1

(i) (3%) Prove that the radius of convergence of the power series f(z) is 1.
(i) (5%) Prove that (1+ z)f'(z) = a- f(z) for all z € (—1,1).
(iii) (8%) Prove that the equation (1) holds for all z € (—1,1).




