國立中央大學 114 學年度碩士班考試入學試題

系所: 統計研究所 碩士班 不分組(一般生)

第1頁/共2頁

統計研究所 碩士班 不分組(在職生)

科目: 基礎數學

*本科考試可使用計算器,廠牌、功能不拘

計算題應詳列計算過程,無計算過程者不予計分

- 1. (16%)
 - (a) (8%) Let g(x) be a nondecreasing nonnegative function for $0 < x < \infty$ and $0 \le f(x) \le 1$ for $0 < x < \infty$. Given $g(\epsilon) > 0$ with some $\epsilon > 0$, show that

$$\int_{g(\epsilon)}^{\infty} f(y)dy \le \frac{1}{g(\epsilon)} \int_{-\infty}^{\infty} g(y)f(y)dy.$$

(b) (8%) Let α be a positive integer and $\lambda > 0$. Show that

$$\int_{\epsilon^2}^{\infty} y^{\alpha - 1} e^{-\lambda y} dy \le \frac{1}{\epsilon^2} \frac{(\alpha + 1)!}{\lambda^{\alpha + 2}}.$$

- 2. (24%)
 - (a) (8%) Show that

$$\int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2}.$$

(b) (8%) Show that for all $y \ge 0$

$$\int_{y}^{\infty} e^{-\frac{x^2}{2}} dx \le \frac{1}{y} e^{-\frac{y^2}{2}}.$$

(c) (8%) Show that

$$\int_1^\infty \int_y^\infty e^{-\frac{(x^2+y^2)}{2}} dx dy \le \sqrt{\pi}.$$

- 3. (16%) Give constants $0 < \alpha_1 < 1$, $0 < \alpha_2 < 1$, $0 < \beta_1 < 1$, $0 < \beta_2 < 1$, and $0 < \mu < 1$. Minimize $\beta_1 w_1^2 + \beta_2 w_2^2$ with respect to w_1 and w_2 under two constraints $w_1 + w_2 = 1$ and $\alpha_1 w_1 + \alpha_2 w_2 = \mu$ with $0 \le w_1 \le 1$ and $0 \le w_2 \le 1$.
 - (a) (8%) Find the minimizer w_1 and w_2 .
 - (b) (8%) Find the minimal value of $\beta_1 w_1^2 + \beta_2 w_2^2$.
- 4. (16%) Given the two by two matrix

$$G = \left(\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array}\right)$$

with $\lambda > 0$ and $\mu > 0$.

- (a) (8%) Find the eigendecomposition $G = B\Lambda B^{-1}$.
- (b) (8%) Evaluate $e^G = \sum_{n=0}^{\infty} \frac{1}{n!} G^n$ using $G = B \Lambda B^{-1}$. Note that $G^0 = I$ where I is the identity matrix.

國立中央大學 114 學年度碩士班考試入學試題

系所: 統計研究所 碩士班 不分組(一般生)

第1頁/共2頁

統計研究所碩士班 不分組(在職生)

科目: 基礎數學

*本科考試可使用計算器,廠牌、功能不拘

5. (28%) Give a full rank matrix

$$A = \left(egin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \ a_{51} & a_{52} & a_{53} & a_{54} \end{array}
ight),$$

and $H = A(A^TA)^{-1}A^T$ where A^T is the transpose of A and A^{-1} is the inverse of A.

- (a) (7%) Show that H^5 is a positive semi-definite matrix.
- (b) (7%) If $rank[H^5] = r \le 5$, show that it has r eigenvalues equal to unity and 5 r eigenvalues equal to zero.
- (c) (7%) Show $trace[H^5] = rank[H^5]$.
- (d) (7%) Find the eigenvalues for $I_5 H^5$ where I_5 is the 5 × 5 identity matrix.