
國立中央大學99學年度碩士班考試入學試題卷

所別:光電科學與工程學系碩士班 不分組(一般生) 共 2 頁 第 科目:電子學 本科考試禁用計算器 *請在試卷答案卷(卡)內作答

- 1. For the circuit in Figure 1, the parameters are $V_{TN} = 1.5 \text{V}$ and $K_{IN} = 0.5 \text{ mA/V}^2$ for transistors M_I and M_2 .
- (a) Determine that I_D , V_{GSI} , V_{DSI} , V_{GS2} , and V_{DS2} for transistors M_I and M_2 , respectively. (5%)
- (b) Sketch the load line for transistor M_2 . (5%)
- (c) Sketch the current-voltage characteristics of transistor M_l . (5%)

- Consider the circuit shown in Fig. 2. The parameters are $\beta = 150$ and $V_A = \infty$.
- (a) Determine the small-signal voltage gain $A_v = v_0/v_s$. (5%)
- (b) Determine the small-signal current gain $A_i = i_0/i_s$. (5%)
- (c) Find the input resistance R_{ib} . (5%)
- (d) Find the input resistance R_{is} . (5%)
 - 3. A multistage amplifier is shown in Figure 3. The transistor parameters for M_1 are $V_{TN} = 0.5$ V, Kn = 2mA/V², and $\lambda = 0$, and for M_2 , M_3 , and M_4 are $V_{TP} = -0.5$ V, Kp = 1 mA/V², and $\lambda = 0$. Let $V_{DD} = 10$ V, $V^+=10$ V, and V=-10 V, $I_{Bias}=0.1$ mA. The resistor parameters are $R_S=10$ k Ω , $R_D=5$ k Ω , $R_G=500$ $k\Omega$, and $R_L = 5 \ k\Omega$. The capacitor parameters are $C_{gs} = 10 \ \mathrm{pF}$, $C_{gd} = 2 \ \mathrm{pF}$ for all transistors, C_G and C_S approaching infinite in the small signal circuit, and $C_C = 5 \mu F$ for all coupling capacitors.
- (a) Determine the lower 3 dB frequency. (5%)
- (5%)(b) Determine the upper 3 dB frequency.
- (c) Determine the midband voltage gain. (5%)

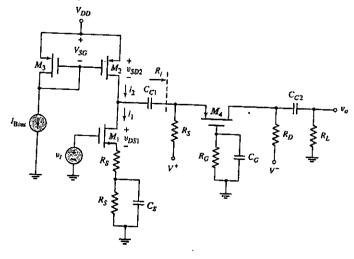
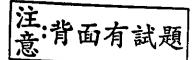
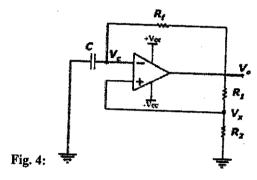



Fig. 3:



國立中央大學99學年度碩士班考試入學試題卷

所別:<u>光電科學與工程學系碩士班 不分組(一般生)</u> 科目:<u>電子學 共 2 頁 第 2 頁</u> 本科考試禁用計算器 *請在試卷答案卷(卡)內作答

- 4. A signal generating circuit is shown in Figure 4. The high saturated output voltage of the comparator is V_L and the low one is V_L .
- (2%) (a) Find the relation between the voltage V_x and the output voltage V_o .
- (3%) (b) Find the relation between the voltage V_c and the output voltage V_o .
- (5%) (c) Draw the time diagram for the voltages V_c and V_o , respectively.
- (5%) (d) Determine the frequency and the duty cycle of the output voltage V_o .

- The figure 5 shows the circuit for a constant current driver. The normal driving condition for LED is set at 700mA. For Q₁, β=100, V_{BE}=0.75V, V_{CE,sat}=0.2V and V_{CE,breakdown}=50V.
- (5%) (a) Why can it be a constant current driver? Derive the relation between the driving voltage V₁ and the output current to drive LED.
 (5%) (b) What are the proper values for the constant current driver?
- (5%) (b) What are the proper values for the resistor R_1 and the reference voltage V_1 ?
- (5%) (c) As under 700mA driving, the forward voltage of the LED is 3.0V. What is the maximal number of the LEDs in series such that the constant current driver can still normally operate?

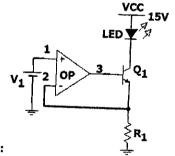
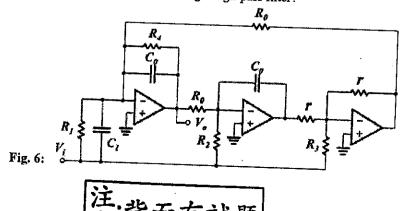



Fig. 5:

- 6. A second-order filter circuit is shown in Figure 6.
- (10%) (a) Derive the transfer function, V_o/V_i .
 - (b) What are the requirements for the circuit being a low-pass filter?
- (c) What are the requirements for the circuit being a high-pass filter?

