所別:光電科學與工程學系碩士班 不分組(一般生) 科目:近代物理 共_2_頁 第____頁 不分組(在職4) *請在試卷答案卷 (卡) 內作答 *本科考試禁用計算器

- . I. (5 pts) Please sketch (a) classical and (b) relativistic total energy-velocity plots of a particle of mass m in a free space (no gravity) in the same figure. Please carefully label the axes, points that the curves intersect with
- 2. (5 pts) Figure A is an 1D potential well as a function of position. The potential well is symmetric to the origin. If E4 and E7 are two eigenstate energies which corresponding to quantum number 4 and 7. Please sketch the corresponding wave functions. Please carefully label the axes and the position a and b in your sketch. Also, please make a brief explain the wave function behavior in the region a < x < b.

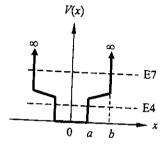


Fig. A. 1D potential well for problem 2.

- 3. If another potential wall is only the positive half of the Fig. A. Please answer the following questions.
- (a) (5 pts) How many eigenstates in this new potential well has energy equal or lower than E7 in problem 2?
- (b) (5 pts) Explain how you get the number in 3(a). (limited to 50 words or less)
- 4. (5 pts) Please list all possible radiative allowed downward transitions (go to lower energy states) for an electron at 4p orbital of an He^+ ion. (Please use the symbol like $6s \rightarrow 5p$.)
- 5. A potential energy V(x,y) is as shown in Fig. B. A particle with mass m is placed in this square box potential. We can use n_x and n_y as the quantum numbers of the wavefunction along x- and y-axis. We can use 2D time-independent Schrodinger equation and separation of variable to solve the steady state wavefunctions of this system as well as the corresponding energy levels.
- (a) (5 pts) Based on uncertainty principle, the lowest possible kinetic energy of this particle is_ (Fill-in-the-blank problems, please just give the result)
- (b) (5 pts) By solving time-independent Schrodinger equation, the general form of the steady state wavefunction _____ (Fill-in-the-blank problems, please just give the result)
- (c) (5 pts) Base on the result from (b), we can obtain the general form of the energy of the corresponding wavefunction as ______. (Fill-in-the-blank problems, please just give the result)
- (d) (5 pts) Please give another wavefunctions which has the same kinetic energy as $(n_x, n_y) = (5, 5)$.

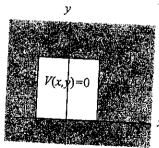


Fig. B. Potential energy distribution in Problem 7.

國立中央大學99學年度碩士班考試入學試題卷

所別:光電科學與工程學系碩士班 不分組(一般生) 科目:近代物理 共 2 頁 第 2 頁

*請在試卷答案卷 (卡)

*本科考試禁用計算器

6. (5 pts) All the wavefunction we obtained from the time-independent Schrödinger equation are steady states or the solution which will not change with time. Why do we still observe spontaneous emission? (limited to 100

- 7. (8 pts) Please suggest two measurement methods to acquire the atomic spectra (energy levels) of a gas (say, helium) using electron beams.
- 8. Questions on uncertainty principle:
- (a) (7 pts) Use of the concept of the Heisenberg's microscope to prove the uncertainty principle regarding the relationship between the position and momentum of a particle.
- (b) (5 pts) Use the uncertainty relation you obtained in (a) to estimate the minimum kinetic energy of an electron that can confine in a hydrogen atom (radius~ 0.5 Å). Please comment on the consistency between the result you just calculated and the known kinetic energy of an electron in a ground-state hydrogen atom (~13.6 eV). (Planck's constant h~6.6×10⁻³⁴ J-s, electron mass~ 9×10⁻³¹ kg)
- (c) (4 pts) Derive the Heisenberg uncertainty principle for the relationship between the time and energy of a photon directly from the position-momentum uncertainty relation you have obtained in (a).
- (d) (4 pts) Use of the Heisenberg uncertainty principle to evidence that there exists a zero-point energy in the
- 9. The resolving power of a microscope is limited by the diffraction of the wave source used in the system.
- (a) (3 pts) Please illustrate why an electron microscope has a much better resolution than a typical optical
- (b) (8 pts) Design experimental setups to deduce the wavelength of an electron source having a kinetic energy of, say, 100 keV without using the known de Broglie's formula. Sketch and illustrate your design schemes. (Hint: you can mainly use a X-ray tube, an electron gun, a Ni crystal, and any other scientific instruments in
- (c) (5 pts) Sketch the structure scheme of an electron microscope to illustrate its working principle.
- 10. (6 pts) Find the criterion for a star of mass M and radius R to be a black hole in the nonrelativistic limit.