國立中央大學九十三學年度碩士班研究生入學試題卷 共2頁 第一頁

所別: 天文研究所碩士班 不分組科目: 普通物理

- 1. (20%) For an N particle system with total mass M and the center of mass located at \bar{R} , show that
 - (i) The total kinetic energy can be written as $T = T_c + \frac{1}{2}M|\vec{R}|^2$ where T_c is the total kinetic energy measured in center of mass system.
 - (ii) The total angular momentum can be written as $\vec{L} = \vec{L}_c + M\vec{R} \times \dot{\vec{R}}$, where \vec{L}_c is the total angular momentum for the center of mass system.
 - (iii) If the force from ith particle acting on the jth particle is $\vec{F}_{ij} = f_{ij}(\vec{r}_i \vec{r}_j)$ where f_{ij} is only the function of distance between ith and jth particles (i.e. $f_{ij} = f(|\vec{r}_i \vec{r}_j|)$) and $f_{ii} = 0$, show that both the total momentum and the total angular momentum of the system are conserved if there is no external force or torque acting on the system
- 2. (15%) A charged particle with charge q and mass m initially located at position $\vec{r}_0 = a\hat{x}$ with velocity $\vec{v}_0 = v_0 \hat{y}$ is influenced under a uniform magnetic field $\vec{B} = B\hat{z}$.
 - (i) Write down the equation(s) of motion.
 - (ii) Solve the equation(s) in (i)
 - (iii) Use the results of (ii) to derive the trajectory of the particle.
- 3. (20%) Two charged particles with charge q and -q are located at $\frac{a}{2}\hat{z}$ and $-\frac{a}{2}\hat{z}$ respectively shown as Figure 1.
 - (i) Show that the electrostatic potential at position \vec{r} is proportional to $\frac{\vec{p} \cdot \vec{r}}{|\vec{r}|^3}$ for $|\vec{r}| >> a$, where $\vec{p} = ga\hat{z}$.

(ii) What is the electric field at \vec{r} if $|\vec{r}| >> a$?

Figure 1

- 4. (20%) Three tanks of monatomic ideal gas with identical initial temperature T, volume V and pressure P expand to 2V through the following three different processes respectively:
 - (a) Isothermal,
 - (b) Adiabatic
 - (c) Free expansion.

Please calculate the following quantities for these three systems:

- (i) Heat flow into the systems (ΔQ)
- (ii) Works done to the environment (ΔW)
- (iii) Internal energy changes of the systems (ΔU)
- (iv) Entropy changes of the systems (ΔS)
- (v) Final temperatures

國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第三頁

所別:天文研究所碩士班 不分組科目:普通物理

- 5. (10%) Two simple harmonic systems with mass M and force constant k are coupled with a spring whose force constant is κ shown as Figure 2
 - (i) Calculate the eigenfrequencies of the system
 - (ii) Find the normal modes of the motions for the system.

Figure 2

- 6. (15%) An unpolarized light beam with intensity I_0 passes through three perfect linear polaroid filters, A B and C whose polarization directions are:
 - A: parallel to x-axis;
 - B: 45° respected to x-axis and
 - C: parallel to y-axis,
 - shown as Figure 3.
 - (i) What is the intensity of the transmitted light beam?
 - (ii) If the filter B is removed, what is the intensity of the transmitted light beam?

Figure 3