所別: 物理研究所 不分組 科目: 近代物理 共 / 頁 第 / 頁

Modern Physics (1999.5.2)

- (20%) 1. A quantum-mechanical system in the absence of perturbations can exist in either of two states 1 or 2 with energies E_1 and E_2 . Suppose that it is acted upon by a time independent perturbation $V = \begin{pmatrix} 0 & V_{12} \\ V_{21} & 0 \end{pmatrix}$. If at time t = 0, the system is in state 1, determine the amplitudes for finding the system in either state at any later time. (Hint: The Hamiltonian is Hermitian.)
- (20%) 2. Consider the one-dimensional Schrodinger equation with $V(x) = \begin{cases} \frac{m}{2}\omega^2 x^2, & \text{for } x > 0 \\ +\infty, & \text{for } x < 0. \end{cases}$ Find the energy eigen-values.
- (20分) 3. An electron is contained inside a sphere of radius R. What is the pressure P exerted on the surface of the sphere, if the electron is in the lowest energy state. (Hint: the lowest state is one of the S-polarized states and consider the spherical symmetry.)
- $\varphi(x) = \begin{cases}
 A\cos\frac{\pi x}{a}e^{-i\pi th}, & \text{for } |x| \le a/2 \\
 0, & \text{for } |x| \ge a/2
 \end{cases}$ Please evaluate the expectation values of x, p, x^2 , and p^2 for the particle associated with this wave function.
- ($\geq 0\%$) 5. The probability of finding a particle at energy E is $|A_E|^2 = \frac{1}{(E E_0)^2 + (\hbar \gamma / 2)^2}$, which has a peak at E_0 . Find (a) the characteristic width of ΔE and the mean lifetime of the state. (b) Can you obtain the result of the Heisenberg uncertainty relation from the above values?

参考用