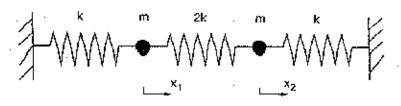
中央大學八十九學年度碩士班研究生入學試題卷

物理學系 不分组

科目: 應用數學

共2页第/页

1. Consider two identical particles with mass m connected by three springs. Assume that the particles can only move in the horizontal direction.



- (a) (5 pts) Write down the equations of motion for x_1 and x_2 .
- (b) (10 pts) Solve the equations of motion to obtain the two eigenmodes and their frequencies
- 2. (a) (7 pts) Solve the operator equation $(D^8 + 8D^6 + 16D^4)y(x) = 0$ where $D^n = \frac{d^n}{dx^n}$.
 - (b) (13 pts) Solve the following differential equation

$$\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = 0 \quad \text{with} \quad V(x) = \begin{cases} 1 & x < 0 \\ -1 & x > 0 \end{cases}$$

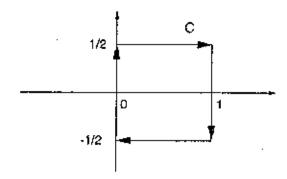
and boundary conditions

$$\psi(x \to \infty) = 0, \qquad \psi(x = 0) = 1.$$

3. Given the integral on the complex plane,

$$I = \int_{\mathcal{C}} \frac{d\mathbf{z}}{\mathbf{z} - 1}$$

with the contour C defined as in the following figure



- (a) (10 pts) Compute the integrations of the four segments of the contour C separately. Add the four results together to get I.
- (b) (10 pts) Use the Residue Theorem to compute the integration I. Check the result with that obtained in (a).
- 4. (10 pts) A gas of total N atoms each with mass m is in equilibrium at a temperature T and under a potential field V(x, y, z),

$$V(x,y,z) = -(x^2 + y^2 + z^2).$$

Boltzmann told us that the number density P(x, y, z) at a given location is proportional to $e^{-mV/kT}$.

中央大學八十九學年度碩士班研究生入學試題卷

物理學系 不分組 科目:

應用數學

共乙頁 第2頁

(a) Find the number density P(x, y, z) with the correct normalization constant.

(b) Define the radial coordinate
$$r^2 = x^2 + y^2 \div z^2$$
 such that

$$dxdydz = 4\pi r^2 dr.$$

Find P(r).

5. (15 pts) Find the Fourier cosine series for the function

$$f(x) = \begin{cases} 1 & 0 < x < \frac{L}{2} \\ 0 & \frac{L}{2} < x < L \end{cases}$$

6. (20 pts) Solve the Laplace equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

in the region 0 < x < 1 and 0 < y < 1 with the following boundary conditions

$$\psi(x=0,y) = 0$$

$$\psi(x=1,y) = .0$$

$$\psi(x,y=0) = 0$$

$$\psi(x,y=1) = \sin 2\pi x.$$