科目: 計算機概論(含資料結構) 共7頁

請在	中作答。
第 1~20	題,每題3分
a. In a b. The Neur c. Bill are I com	fates (比爾蓋茲) is the first one to propose (提出) that, since program and dat gically (邏輯上) the same, programs should also be stored in the memory of a
	1 011
a. 5 b. 6 c. 7 d. 8	Find the minimum number of binary digits required to store positive decimal including 0) with a maximum of 2 digits. (Choose the best answer!)
	Assume that we are given a 4-bit integer, of which the 2's complement ration is 1110. Then what is its decimal value? b2 c14 d. 2 e. None of the above.

5 Let s	s consider an	8-bit nexadecii	mai integer $x =$	(88) ₁₆	
Then x XOR	(FF) ₁₆ XOR (0	0) ₁₆ XOR (0F) ₁₆	XOR $(F0)_{16} = ?$		
a. (44) ₁₆	<i>b.</i> (88) ₁₆	c. (FF) ₁₆	<i>d.</i> (00) ₁₆	e. None of t	he above
best answer!)		the concept of	"programmed	I/O?" (Choose the
	waits for the	-			
b. The I/O	device inform	s the CPU of its	s status via an i	nterrupt.	
c. The CPU transaction		requests to a h	nardware contro	oller which ma	nages the entire
<i>d.</i> It is a pa		e that provides	s a daisy chain o	connection bet	ween devices and
e. None of	the above				
a. Pipelininb. Programthere is ac. In a RISCinstructiod. Intel x86	ng can increas nming in CISC- single instruc -based compo ns. 6 CPU series a	e the throughp based compute tion for both s uter, complex i	imple and com	instructions in asier than in otle plex tasks. simulated usireture.	her designs because
pipelining	<i>5</i> .				
in this compu	•	. How many bit	ry. Each word (emory access unit) single word in
d. 34					
e. None of	the above				
9 Whi	ch layer of th	e TCP/IP proto	col suite define	s the Internet	Protocol?
a. Application	າ <i>b.</i> Tran	sport <i>c.</i> Ne	etwork <i>d.</i>	Data link	e. Physical

10 Which of th	e following is not	a necessary co	ndition for deadlock?	
a. Circular waiting	<i>b.</i> Mutua	l exclusion.	c. Preemption.	
d. Resource holding				
	_		, by which a program is d	
		e loaded into m	emory one by one, execu	ited, and
replaced by another p	_			
_			c. Divide-and-Conqu	er.
d. Mono-Programming	g e. Virtual ı	memory		
12Which of the	e following is usua	ally considered	as a functional language?)
a. C b.	Java	c. Scheme		
<i>d.</i> R e.	x86 instruction se	t		
13. Which of the	e following regard	ling system test	ing is true? (Choose the b	oest
answer!)				
a. Regression test u	sually adopts a bl	ack-testing met	hod.	
b. Unit test is usuall	y done by the tes	ting team.		
c. Software testabil	ity is very importa	ınt in transferal	pility measurements.	
d. Software reliabili	ty is important in	maintainability	measurements.	
e. None of the abov	e.			
14What eleme	int(s) does an emr	nty linked list co	unsist of?	
a. a node	b. a data cell ar	-	c. a pointer to a	node
d. a null head pointer			e. a pointer to a	Houc
a. a man neda pointer	c. None of the	above		
15 Assume a co	omputer uses pipe	elining of 6 stag	es. Each stage demands	1 clock cycle
to finish its task. How	many clock cycles	are need to ex	ecute 12 independent (기	「相關的)
instructions (指令)?				
a. 6 b. 12	c. 17	d. 18	e. 72	
16 Which of th	e following is the	most efficient i	n complexity measure if	the input
size of an algorithm is	N?			
a. $O(N)$ b	$O(100^{10000})$	c. $O(\log_2 N)$	$O(N^N)$ d. $O(N^N)$ e.	$O(\frac{1}{N})$

17. _____ Consider the figure on the right side. Visit all vertices using the in-order traversal algorithm. Which of the following is the correct result? (Choose the best answer!)

- a. 12345678910
- b. 12536810479
- c. 12347695810
- d. 43726918510
- e. None of the above
- 18. _____ Which of the following is true about data structure? (Choose the best answer!)
 - a. A binary search tree is a tree in which no node can have more than two subtrees.
 - b. All the members of an array must be of the same type.
 - c. A queue is a First-In-First-Out data structure.
 - d. While removing an element from a stack, the latest element in the stack is removed.
 - e. All of the above.
- 19. _____ Which of the following is wrong regarding computer security.
 - a. DES is a symmetric crytographic method
 - b. Watermarking is one of the crytographic techniques.
 - c. Denail of service (DoS) is a type of attack that threatens availability.
 - d. Digital signature needs an asymmetric cryptographic system.
 - e. Steganography is the technique of concealing a message, image, or file within another message, image, or file.
- 20. _____ Which of the following technique is used in LZ encoding?
- a. Quantization
- b. DCT transformation
- c. Dictionary

- d. Registration
- e. Antifragility

第 21~30 題,每題 4 分

- 21. _____ What is a "dangling pointer?" (Choose the best answer!)
 - a. A pointer to an invalid object/cell that was already destructed.
 - b. A memory location in which no pointer refers to it. Thus it cannot be reused by the system.
 - c. A null pointer initialized by the programmers.
 - d. A pointer passed to a remote computer host.
 - e. None of the above.

22. ____ Consider the code piece in C/C++ on the right side. What will be printed on the standard output?

a. 1

b. 7

c. 8

d. 2

e. 3

```
int z=1;

if (6 == 7)
    if (8 == 8)
        z=2;
    else    z=3;

std::cout << z << std::endl;</pre>
```

23.____ Assume that the size of an int variable and the size of a pointer are both

- 4. Now consider the right figure. What value will be printed on the screen after the C/C++ program finishes? (Choose the best answer!)
- a. 44
- b. 4 400
- c. 400 4
- d. 400 400 e. None of the above

```
void foo(int *);
int main() {
  int a[100];
    foo(a);
    std::cout << sizeof(a) << std::endl;
    return 0;
}

void foo(int * a) {
    std::cout << sizeof(a) << " ";
}</pre>
```

- 24. Which of the following is true regarding Java Interface? (Choose the best answer!)
- a. A Java interface can be initialized to an object.
- b. A Java interface can only inherit one interface.
- c. A java class can only implement one interface.
- d. A variable can be declared as an interface type.
- e. None of the above

25. ____ Consider the C/C++ program on the right side.
There could be a bug that causes a segmentation fault.
Which line is it? (Choose the best answer!)

- *a*. 4
- *b*. 5
- c. 6
- d. 7
- e. None of the above

```
int main() {
2
     int x=0;
3
     int* y=0;
4
     int^* ptr = &x;
5
     ptr = y;
6
     x=1;
7
      *ptr = x;
8
     std ::cout << ptr;
9
      return 0;
10 }
```

26. ____ The C++ program on the right side could have a bug in

- it. Where is it?
 - a. Lines 8
 - *b*. Line 13
 - *c*. Line 14
 - *d* .Line 15
 - e. Line 16

```
1.
     template<class T> T f(T x, T y) {return x+y;};
2.
     template<class T>
3.
     class Complex {
4.
      public:
5.
       T x.v:
6.
       Complex(T a, T b) {x=a;y=b;}
7.
       Complex operator+(Complex c) {
8.
         return *(new Complex(x+c.x,y+c.y));
9.
10. };
11.
12. int main () {
13.
       Complex<double> a(1,1), b(0.1,0.1);
14.
       f(1, 2);
15.
       f(a, b);
16.
       f(0.1, 1);
17.
       return 0;
18.
```

27. _____What is the output of the Java program on the right side? (Choose the best answer!)

- a. 8
- *b*. 13
- c. 21
- d.3
- e. None of the above

```
public class Test {
  public static void main(String[] arg
    System.out.println(rec(6));
  }

  public static int rec(int n) {
    if (n <= 1)
      return 1;
    else
      return n + rec(n - 2);
  }
}</pre>
```

28. _____What is the output of the Java program on the right side when called with an argument of 1? (Choose the best answer!)

```
a. 8
```

b. 5

c. 4

d.1

e. None of the above

```
int rec( int i){
    if ( i < 4 ){
        return (rec(++i) + rec(i++));
    } else {
        return 1;
    }
}</pre>
```

29. ____Find how many times the "statement" in the following code segment (in pseudocode that is similar to C/C++) is executed? (Choose the best answer!)

a. 1

b. 2

c. the value < 5 and >= 2

d. the value < 10 and >= 5

e. None of the above

```
...
int a=5;
while(a<7) {
    statement;
    a=a-2;
}
...
```

30.____ Consider the code piece in C/C++ on the right side. What will be printed on the standard output? (Choose the best answer!)

a. a is 1 and b is 2

b. a is 1 and b is 1

c. a is 2 and b is 1

d. a is 2 and b is 2

e. None of the above

```
void foo(int* x, int* y) {
    int *t = x; y = x; x = t;
}

int main(void) {
    int a = 1;         int b = 2;
    foo( &a, &b );
    printf("a is %d and b is %d\n", a, b);
    return 0;
}
```