類組:電機類 科目:工程數學 A(3003)

共_6_頁第_1 頁

單一選擇題,共20題,每題5分。

- 1. In the vector space R^4 , what is the dimension of the subspace spanned by the set $\{(1,0,1,0), (1,2,0,3), (0,-1,-4,1), (2,1,-3,4), (2,3,5,2)\}$?
- (A) 1
- (B) 2
- (C) 3
- (D)4
- (E) 5
- 2. Let $T: P_5(R) \to R^8$ be linear, where $P_5(R)$ is the vector space consisting of all polynomials with real-valued coefficients and having degree less than or equal to five. If we know that the rank of T is 2, then what is the nullity of T?
- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E)5
- 3. Let $A, B \in M_{n \times n}(F)$, where $M_{n \times n}(F)$ is the vector space consisting of all $n \times n$ matrices with entries from a field F. Which of the following statements is incorrect?
- (A) $rank(AB) \le rank(A)$.
- (B) $rank(AB) \le rank(B)$.
- (C) $det(AB) = det(A) \cdot det(B)$.
- (D) If $det(AB) \neq 0$, then both A and B are invertible.
- (E) If det(AB) = 0, then both A and B are not invertible.
- 4. Let $A \in M_{n \times n}(F)$ and let A^t be the transpose of A. Which of the following statements is incorrect?
- (A) A and A^t have the same determinant.
- (B) A and A^t have the same characteristic polynomial.
- (C) A and A^t have the same eigenvalues.
- (D) A and A^t have the same eigenvectors.
- (E) A and A^t have the same diagonalizability, i.e., A is diagonalizable if and only if A^t is diagonalizable.
- 5. Consider the vector space R^2 endowed with the standard inner product. Let u = (2,6) be a vector in R^2 and let $W = \{(x,y): y = 4x\}$ be a subspace of R^2 . Which of the following is the orthogonal projection of the vector u on the subspace W?
- (A) (24/17,96/17)
- (B) (26/17,104/17)
- (C) (7/19,28/19)
- (D) (11/19,44/19)
- (E) (26/23,104/23)

注:背面有試題

類組:電機類 科目:工程數學 A(3003)

共_6_頁第_2_頁

6. A vector space is spanned by $\{1, \cos(t), \sin(t)\}$ for $-\pi \le t \le \pi$. If a vector: $v = a \cdot 1 + b \cdot \sin(t) + c \cdot \cos(t)$ is the closest vector in this vector space to a continuous function: f(t) = t for $-\pi \le t \le \pi$, what is this closest vector v? You may need the following integral: $\int t \cdot e^{tt} dt = -i(t+i)e^{tt} + C$.

(A)
$$v = 1 + 2\sin(t) - 2\cos(t)$$

(B)
$$v = 1 - 2\cos(t)$$

(C)
$$v = 2\sin(t)$$

(D)
$$v = 1 + 2\sin(t)$$

(E)
$$v = -2\cos(t)$$

7. For a 5x5 matrix:
$$A(t) = \begin{pmatrix} 7 & 1 & -2 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 4 & 3 & 2 & 3 & 4 \\ 2 & 2 & 2\sin t & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \end{pmatrix}$$
, which value of t will make both

 $\det(A(t))$ and $\frac{d}{dt}\det(A(t))$ equal 0?

- (A) 0
- (B) $\pi/6$
- (C) $\pi/2$
- (D) $3 \pi / 4$
- (E) π
- 8. A quadratic equation is described as: $x^2 + 8xy + 7y^2 = 225$. Which of the following statement is incorrect?
- (A) This quadratic curve is an ellipse.
- (B) The curve is centered at the origin.
- (C) One of the principal axis is $\frac{1}{\sqrt{5}}(2x-y)$
- (D) The other principal axis is $\frac{1}{\sqrt{5}}(x+2y)$
- (E) The shortest distance from this quadratic curve to the origin is 5.

類組:電機類 科目:工程數學 A(3003)

共 6 頁第 3 頁

- 9. Let T be a linear operator in \mathbb{C}^2 and is defined by $\mathbf{T}(a, b) = (3a + (2 + i)b, (2 i)a + 7b)$. What kind of operator is T?
 - I. Normal,
 - II. Self-adjoint,
 - III. Unitary,
 - IV. Orthogonal.
- (A) I only
- (B) I and II
- (C) I, II, III
- (D)I, II, III, IV
- (E) None of them
- 10. For a linear equation system: $\begin{cases} x + 2y + z = 4 \\ x y + 2z = -11, \text{ which of the following statement is} \\ x + 5y = 19 \end{cases}$

incorrect?

- (A) The system is consistent.
- (B) (-6, 5, 0) is one of the solutions.
- (C) The corresponding homogeneous system has more than one solution.
- (D)(-10, 2, 6) is a spanning vector to form the subspace generated by the solutions of the corresponding homogeneous system.
- (E) (-6, 5, 0) is the minimal solution.
- 11. Which of the following complex functions is analytic in the complex z-plane, in the open disk defined by |z| < 1?
 - (A) 1/z
 - (B) $z^{1/2}$
 - $(C) \cot(z)$
 - $(D)e^{z}$
 - (E) None of the above
- 12. Which of the following statements is WRONG about an analytic function f(z) in an open, simply connected domain D? C below refers to a simple path in D going from the complex number 'a' to the complex number 'b'.
 - (A) If a = b, the line integral of f(z) along C vanishes.
 - (B) The line integral of f(z) along C depends only on 'a' and 'b',
 - (C) The function given by f'(z) + f''(z) is analytic in D, too.
 - (D) f'(z)/f(z) integrated along C is given by $\ln(f(b)) \ln(f(a))$.
 - (E) f'(z) + f''(z) integrated along C is given by f(b) + f'(b) f(a) f'(a).

台灣聯合大學系統 114 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 A(3003)

共_6 頁第4頁

- 13. Which of the following power series is NOT an analytic function in the open disk |z| < 1, in the complex z-plane?
 - (A) The geometric series given by $1 + z + z^2 + \dots$
 - (B) The derived series $1 + 2z + 3z^2 + \dots$ obtained from the above geometric series.
 - (C) The integrated series $z + z^2/2 + z^3/3 + \dots$ obtained from the above geometric series.
 - (D) $1 + z + ... + z^n / n! + ...$
 - (E) The geometric series given by $1 + 2z + (2z)^2 + \dots$
- 14. Which of the statements is WRONG about sin(i z), where z = x + i y with (x,y) the Cartesian coordinates?
 - $(A)\sin(i z) = i \sinh(z).$
 - (B) $\sin(iz)$ is periodic in x.
 - (C) $\sin(iz)$ is analytic in the open disk |z| < 1.
 - (D) sin(iz) is an entire function.
 - (E) $\sin(iz) = (e^{-z} e^{z})/(2i)$.
- 15. Let f(z) = entire function with a nonvanishing value at z = 0, and $g(z) = f(z) / z^2$. Which of the statements is CORRECT about g(z)?
 - (A) g(z) has a simple pole at z = 0.
 - (B) g(z) has a residue given by f(0) at z = 0.
 - (C) When g(z) is expanded into a Taylor series about $z_0 = 2$ i, it has a radius of convergence = 2.
 - (D) g(z) has a residue given by f'(1) at z = 1.
 - (E) None of the above.
- 16. Find the solution to $\frac{dy}{dx} + 3y = e^{-x}x^2$. (Note that all c's are constants)
- (A). $ce^{-x} + \frac{1}{4}(2x^2 2x + 1)e^{-3x}$ (B). $ce^{-x} + \frac{1}{4}(2x^2 + 2x 1)e^{-3x}$
- (C). $ce^{-3x} + \frac{1}{4}(2x^2 + 2x + 1)e^{-x}$ (D). $ce^{-3x} + \frac{1}{4}(2x^2 2x + 1)e^{-x}$
- (E). $ce^{-3x} + \frac{1}{4}(2x^2 2x 1)e^{-x}$

類組: 電機類 科目: 工程數學 A(3003)

共_6頁第5頁

17. Find the solution to $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \sin x$

(A).
$$e^{-\frac{x}{2}}(c_1\cos\sqrt{3}x + c_2\sin\sqrt{3}x) - \sin x$$

(B).
$$e^{-\frac{x}{2}} \left(c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right) - \cos x$$

(C).
$$e^{-\frac{x}{2}}(c_1\cos\sqrt{3}x - c_2\sin\sqrt{3}x) + \sin x$$

(D).
$$e^{-\frac{x}{2}}(c_1\cos\frac{\sqrt{3}}{2}x + c_2\sin\frac{\sqrt{3}}{2}x) + \cos x$$

(E).
$$e^{-\frac{x}{2}}(c_1\cos\frac{\sqrt{3}}{2}x - c_2\sin\frac{\sqrt{3}}{2}x) + \sin x$$

18. Find the solution to $x^2 \frac{d^2 y}{dx^2} + y = 3x^2$, for x > 0.

(A).
$$y = -x^2 + \sqrt{x} [c_1 \cos(\frac{\sqrt{3}}{2}(\ln x)) + c_2 \sin(\frac{\sqrt{3}}{2}(\ln x))]$$

(B).
$$y = 2x^2 - \sqrt{x} [c_1 \cos(\frac{\sqrt{3}}{2}(\ln x)) + c_2 \sin(\frac{\sqrt{3}}{2}(\ln x))]$$

(C).
$$y = x^2 - \sqrt{x} [c_1 \cos(\frac{\sqrt{3}}{2}(\ln x)) + c_2 \sin(\frac{\sqrt{3}}{2}(\ln x))]$$

(D).
$$y = -x^2 + \sqrt{x} [c_1 \cos(\frac{\sqrt{3}}{2}(\ln x)) - c_2 \sin(\frac{\sqrt{3}}{2}(\ln x))]$$

(E).
$$y = 2x^2 + \sqrt{x} [c_1 \cos(\frac{\sqrt{3}}{2}(\ln x)) - c_2 \sin(\frac{\sqrt{3}}{2}(\ln x))]$$

19. Let f(t) = t - [t], where [t] is the largest integer that is not larger than t. Find the Laplace transform of f(t).

(A).
$$\frac{1-e^{-s}(1+s)}{s^2(1-e^{-s})}$$
 (B). $\frac{1+e^{-s}(1+s)}{s^2(1-e^{-s})}$ (C). $\frac{1-e^{-s}(1+s)}{s(1-e^{-s})}$

(D).
$$\frac{1+e^{-s}(1-s)}{s^2(1-e^{-s})}$$
 (E).
$$\frac{1-e^{-s}(1-s)}{s(1-e^{-s})}$$

類組:<u>電機類</u> 科目:<u>工程數學 A(3003)</u>

共 6 頁 第 6 頁

20. Find the inverse Laplace transform of $\frac{1}{s^3+1}$

(A).
$$\frac{1}{3}e^{-t} + \frac{1}{3}e^{\frac{t}{2}}\cos(\frac{\sqrt{3}t}{2}) + \frac{\sqrt{3}}{3}e^{\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})$$

(B).
$$\frac{1}{3}e^{-t} - \frac{1}{3}e^{\frac{t}{2}}\cos(\frac{\sqrt{3}t}{2}) + \frac{\sqrt{3}}{3}e^{\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})$$

(C).
$$\frac{1}{3}e^{-t} - \frac{1}{3}e^{\frac{t}{2}}\cos(\frac{\sqrt{3}t}{2}) - \frac{\sqrt{3}}{3}e^{\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})$$

(D).
$$-\frac{1}{3}e^{-t} - \frac{1}{3}e^{\frac{t}{2}}\cos(\frac{\sqrt{3}t}{2}) + \frac{\sqrt{3}}{3}e^{\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})$$

(E).
$$-\frac{1}{3}e^{-t} + \frac{1}{3}e^{\frac{t}{2}}\cos(\frac{\sqrt{3}t}{2}) - \frac{\sqrt{3}}{3}e^{\frac{t}{2}}\sin(\frac{\sqrt{3}t}{2})$$