共11頁第 1頁

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請將答案用2B鉛筆填於答案卡。
- 共二十題,每題五分。每題ABCDE選項單獨計分;每一選項個別分數為一分,答錯倒扣一分,倒扣至本測驗試題零分為止。

Notation: In the following questions, \mathbb{Z} is the set of integers, and \mathbb{R} is the usual set of all real numbers. We will use underlined lowercase letters such as $\underline{a} \in \mathbb{R}^n$ to denote a real, column vector \underline{a} of length n. $\|\underline{a}\|$ means the Frobenius norm of vector \underline{a} , and $\underline{0}$ is the all-zero column vector of proper length. We will use boldface uppercase letters such as $\mathbf{A} \in \mathbb{R}^{m \times n}$ to denote a real matrix \mathbf{A} of size $m \times n$, and we will write $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{m \times n}$, where $a_{i,j}$ is the (i,j)-th entry of \mathbf{A} with subindices $i = 1, \ldots, m$, and $j = 1, \ldots, n$. \mathbf{A}^{\top} is the transpose of matrix \mathbf{A} . $\det(\mathbf{A})$ and $\det(\mathbf{A})$ are respectively the determinant and trace of square matrix \mathbf{A} . $\operatorname{row}(\mathbf{A})$, $\operatorname{col}(\mathbf{A})$ and $\operatorname{null}(\mathbf{A})$ are the row, column and right null spaces of \mathbf{A} over \mathbb{R} , respectively. Unless otherwise stated, all vector spaces and linear combinations are over field \mathbb{R} , and the orthogonality is with respect to the usual Euclidean inner product. By $\dim(\mathcal{V})$ we mean the dimension of vector space \mathcal{V} over its base field \mathbb{R} .

We will write $F_X(x)$ to denote the cumulative distribution function (CDF) of random variable X. If X is a discrete random variable, then the probability mass function (PMF) of X is denoted by $p_X(x)$; if X is a continuous random variable, it is always assumed that X has a probability density function (PDF), denoted by $f_X(x)$. $\mathbb{E}[X]$ and Var(X) denote the expected value and variance of random variable X, respectively. $\mathbb{P}()$ denotes the probability measure in a probability space.

- 1. Consider the linear system $\underline{A}\underline{x} = \underline{b}$ in the unknown \underline{x} , where $\underline{A} = [\underline{a}_1, \dots, \underline{a}_n] = [\underline{r}_1, \dots, \underline{r}_m]^{\top} \in \mathbb{R}^{m \times n}$ and nonzero $\underline{b} = [b_1, \dots, b_m]^{\top} \in \mathbb{R}^m$ are given and fixed, with \underline{r}_i^{\top} and \underline{a}_j representing the *i*-th row and the *j*-th column of matrix \underline{A} , respectively. Which of the following statements is/are true?
 - (A) The number of pivots of A equals the minimum of m and n.
 - (B) With \underline{a}_j 's and \underline{b} given above, if the linear system $\sum_{j=1}^n y_j \underline{a}_j = \frac{1}{2}\underline{b}$ in the unknowns y_j 's is consistent, then $\underline{b} \in \operatorname{col}(\mathbf{A})$.
 - (C) Let \underline{s} be a solution to the above system $\underline{A}\underline{x} = \underline{b}$. If $\underline{r}_i^{\top}\underline{s} = 0$ for some i, then $\underline{r}_k^{\top}\underline{s} = 0$ for all k = 1, ..., m.
 - (D) If the system $\mathbf{A}\underline{x} = \underline{b}$ has infinitely many solutions, then there exists a vector $\underline{x}_0 \in \mathbb{R}^n$ with $\underline{x}_0 \neq \underline{0}$ such that $\mathbf{A}\underline{x}_0 = \underline{0}$.
 - (E) None of the above is true.

共 11 頁 第 2 頁

2. Consider the three linear transformations $H_i: \mathbb{R}^2 \to \mathbb{R}^2$ given by $H_i(\underline{s}) = \mathbf{H}_i \underline{s} = \underline{r}_i$ for i = 1, 2, 3, where

$$\mathbf{H}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{H}_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ and } \mathbf{H}_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$$

respectively. Which of the following statements is/are true?

- (A) For every \underline{s} , the corresponding \underline{r}_i is in $\operatorname{col}(\mathbf{H}_i)$ for all i = 1, 2, 3.
- (B) For every \underline{s} , the corresponding \underline{r}_i is in null(\mathbf{H}_i) for all i = 1, 2, 3.
- (C) There exists \underline{s} such that the corresponding $\underline{r}_i^{\mathsf{T}}$ is in row(\mathbf{H}_i) for all i=1,2,3.
- (D) There exists a non-zero vector in the intersection of $col(H_1)$, $col(H_2)$ and $col(H_3)$.
- (E) None of the above is true.

3. Continue from Question 2. Which of the following statements is/are true?

- (A) There exists \underline{s} such that the corresponding $\underline{r}_1 = \underline{r}_2 \neq \underline{0}$.
- (B) There exists \underline{s} such that the corresponding $\underline{r}_1 \neq \underline{r}_2 = \underline{0}$.
- (C) There exists \underline{s} such that the corresponding $\underline{r}_2 \neq \underline{r}_3 = \underline{0}$.
- (D) There exists \underline{s} such that the corresponding $\underline{r}_1 \neq \underline{r}_2 = \underline{r}_3 = \underline{0}$.
- (E) None of the above is true.

台灣聯合大學系統114學年度碩士班招生考試試題

類組:電機類 科目:工程數學 B(3004)

共11頁第3頁

4. The following set is a basis for the vector space \mathbb{R}^3

$$\mathcal{B} = \left\{ \underline{b}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \underline{b}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \underline{b}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

It means that every vector in \mathbb{R}^3 can be expressed as a linear combination of the three basis vectors, \underline{b}_1 , \underline{b}_2 and \underline{b}_3 . For instance, $\underline{y} = [1, 2, 3]^{\top} = \sum_{i=1}^{3} a_i \underline{b}_i$ for some a_1 , a_2 and a_3 , and the vector $\underline{a} = [a_1, a_2, a_3]^{\top}$ is called the coordinate vector of \underline{y} with respect to basis \mathcal{B} . Which of the following statements is/are true?

- (A) The basis \mathcal{B} is NOT an orthogonal basis.
- (B) The basis \mathcal{B} can be obtained by a rotation of the standard basis for \mathbb{R}^3 .
- (C) $4 \le ||\underline{a}|| \le 5$.
- (D) $3 \le ||\underline{a}|| \le 4$.
- (E) None of the above is true.

5. Continue from Question 4. Let

$$\mathcal{C} = \left\{ \underline{c}_1 = \left[egin{array}{c} -rac{1}{2} \\ -rac{1}{2} \\ 0 \end{array}
ight], \underline{c}_2 = \left[egin{array}{c} rac{1}{2} \\ -rac{1}{2} \\ 0 \end{array}
ight], \underline{c}_3 = \left[egin{array}{c} 0 \\ 0 \\ rac{1}{2} \end{array}
ight]
ight\}$$

be another basis for \mathbb{R}^3 . The coordinate vector of \underline{y} with respect to \mathcal{C} is $\underline{a}' = [a'_1, a'_2, a'_3]^{\mathsf{T}}$, and we have $\underline{a}' = \mathbf{W} \underline{a}$ for some matrix \mathbf{W} . Which of the following statements is/are true?

- (A) W is a square matrix.
- (B) $det(\mathbf{W}) > 0$.
- (C) a' is orthogonal to a.
- (D) $\|\underline{a}'\| < \|\underline{a}\|.$
- (E) None of the above is true.

台灣聯合大學系統 114 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 B(3004)

共_11_頁第4_頁

6. Consider the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ given by

$$T(\mathbf{A}) = \mathbf{AM} - \mathbf{MA}$$
, where $\mathbf{M} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.

Let T be the matrix representation of T with respect to the following basis \mathcal{B} for $\mathbb{R}^{2\times 2}$

$$\mathcal{B} = \left\{ \mathbf{B}_1 = \begin{bmatrix} 2 & -3 \\ 3 & 3 \end{bmatrix}, \mathbf{B}_2 = \begin{bmatrix} 1 & -2 \\ -3 & 0 \end{bmatrix}, \mathbf{B}_3 = \begin{bmatrix} 3 & -2 \\ 3 & 3 \end{bmatrix}, \mathbf{B}_4 = \begin{bmatrix} 3 & 2 \\ 0 & -3 \end{bmatrix} \right\}.$$

Which of the following statements is/are true?

- (A) T is symmetric and nonnegative definite.
- (B) The absolute of the product of nonzero singular values of T equals 16.
- (C) The maximal eigenvalue of T exceeds 5.
- (D) $\dim(\text{row}(\mathbf{T})) = 3$.
- (E) None of the above is true.

- 7. Continue from Question 6. Let $C = [c_{i,j}]$ be the orthogonal projection of B_1 onto the kernel space of T with respect to the inner product $\langle A, B \rangle := \operatorname{tr}(A^T B) + \operatorname{tr}(B^T A)$ for any $A, B \in \mathbb{R}^{2 \times 2}$. Which of the following statement is/are true?
 - (A) $c_{1,1} > 2$.
 - (B) $c_{1,2} < -3$.
 - (C) $c_{2,1} > 3$.
 - (D) $c_{2,2} < 3$.
 - (E) None of the above is true.

台灣聯合大學系統 114 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 B(3004)

共11頁第5頁

8. Continue from Question 6. Let \mathcal{V} be the vector space generated by compositions of T over \mathbb{R} , i.e.,

$$\mathcal{V} = \left\{ \sum_{n=0}^{\infty} v_n T^n : v_n \in \mathbb{R} \right\},$$

where $T^0(\mathbf{A}) = \mathbf{A}$ is the identity map and by T^n we mean the *n*-fold composition of T, and let $G: \mathcal{V} \to \mathcal{V}$ be a linear operator given by $G(v) = T^2v$ for $v \in \mathcal{V}$. Which of the following statement is/are true?

- (A) $\dim(\mathcal{V}) = 4$.
- (B) The kernel space of G is trivial.
- (C) The sum of all eigenvalues of G exceeds 4.
- (D) G has four linearly independent eigenvectors.
- (E) None of the above is true.

- 9. Let \mathcal{P} be the vector space of real polynomials p(x) having a common zero at x=1. The space \mathcal{P} is equipped with an inner product $\langle p(x), q(x) \rangle := \sum_{i,j \geq 0} \frac{p_i q_j}{i+j+1}$ for any $p(x) = \sum_{i \geq 0} p_i x^i$ and $q(x) = \sum_{j \geq 0} q_j x^j$ in \mathcal{P} . Let $q(x) = q_3 x^3 + q_2 x^2 + q_1 x + q_0$ be the orthogonal projection of $x^3 x^2 + 2x 2$ onto the orthogonal complement of the subspace of linear polynomials in \mathcal{P} . Which of the following statement is/are true?
 - (A) $q_2 > q_1$.
 - (B) $q_2 > q_0$.
 - (C) $q_1 > q_0$.
 - (D) $q_0 > 0$.
 - (E) None of the above is true.

共_11_頁第_6頁

10. Consider the QR-decomposition of the following matrix

$$\begin{bmatrix} 2 & 0 & 3 \\ -2 & -2 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \mathbf{QR},$$

where the columns of orthonormal matrix $\mathbf{Q} = [q_{i,j}]$ are obtained using the usual Gram-Schmidt procedure but are chosen such that the diagonal values of upper triangular matrix $\mathbf{R} = [r_{i,j}]$ are all negative. Which of the following statement is/are true?

- (A) $q_{1,2} > 0$.
- (B) $q_{2,2} > 0$.
- (C) $r_{2,3} > 0$.
- (D) $r_{1,2} > r_{1,3}$
- (E) None of the above is true.

11. Let $X \in \{0,1\}$ be a Bernoulli random variable with $\mathbb{E}[X] = \frac{1}{4}$. Let $Y, 0 \leq Y \in \mathbb{Z}$, be a Poisson random variable with $\mathbb{E}[Y] = 1$. In addition, X and Y are statistically independent. Which of the following statements is/are true?

- (A) $\mathbb{P}(Y=1) = e^{-1}$.
- (B) $\mathbb{P}(Y=2) = e^{-2}$.
- (C) $\mathbb{P}(X+Y=0) \le \frac{3}{8}$.
- (D) $\mathbb{P}(2X + Y = 2) = \frac{5}{8}e^{-1}$.
- (E) $\mathbb{P}(X > Y) = e^{-1}$.

類組: <u>電機類</u> 科目: <u>工程數學 B(3004)</u>

共_11 頁 第_7_頁

12. Let $X \in \mathbb{R}$ be a continuous random variable with the following CDF

$$F_X(x) = \left\{ egin{array}{ll} rac{1}{2}e^x, & x \leq 0, \ 1 - rac{1}{2}e^{-x}, & x > 0. \end{array}
ight.$$

Which of the following statements is/are true?

- (A) $F_X(-4) \leq F_X(4)$.
- (B) $\mathbb{P}(X \le 2) = 1 \frac{1}{2}e^{-1}$.
- (C) $f_X(x) \ge 0$ for all $x \in \mathbb{R}$.
- (D) $f_X(-2) = f_X(2)$.
- (E) $f_X(x)F_X(x) \in [0,1]$ for all $x \in \mathbb{R}$.

13. Continue from Question 12. Which of the following statements is/are true?

- (A) $\mathbb{E}[X] = 0$.
- (B) $\mathbb{P}(X \in [0,1]) \ge \frac{1}{3}$.
- (C) $\mathbb{E}[X^3] = 1$.
- (D) $\mathbb{E}[X^2] + \mathbb{E}[X^4] = 25$.
- (E) $\mathbb{E}[X^2] = 2$.

共_11_頁 第_8_頁

14. Let X be a continuous random variable that is uniformly distributed in [1, 2]. Let $Y = X^2$. Which of the following statements is/are true?

- (A) $\mathbb{P}(Y \ge 2) \ge \frac{1}{2}$.
- (B) $\mathbb{P}(Y \in [2,3]) = \frac{1}{3}$.
- (C) $\mathbb{P}(Y=2) \ge \frac{1}{4}$.
- (D) $\mathbb{P}(Y \le 3) = \sqrt{3} 1$.
- (E) $f_Y(2) \leq \frac{1}{4}$.

15. Let X and Y be two independent real Gaussian random variables with $\mathbb{E}[X] = 2$, $\mathbb{E}[X^2] = 5$, $\mathbb{E}[Y] = 0$ and $\mathbb{E}[Y^2] = 1$. It can be shown that $\mathbb{E}[-2\ln(f_X(X))] = \ln(2^a e^b \pi^c)$ for some $a, b, c \in \mathbb{Z}$. Which of the following statements is/are true?

- (A) $\mathbb{P}(X \ge 3) = \frac{1}{2}$.
- (B) $\mathbb{E}[(X-2)^4] = 3$.
- (C) Var(X + Y) = 2.
- (D) a = 1 and b = -1.
- (E) c = 1.

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

共_11_頁第_9頁

- 16. Consider a Bernoulli random variable $X \in \{0,1\}$ with $\mathbb{P}(X=1) = q$ and $\mathbb{P}(X=0) = 1-q$, and a continuous random variable Y that is conditioned on X. Given X=1, Y is a real Gaussian random variable with mean μ and variance σ^2 ; on the flip side, given X=0, Y is an exponential random variable with mean λ . Which of the following statements is/are true?
 - (A) The joint PDF $f_{X,Y}(1,3) = \frac{1}{\lambda}e^{-\frac{3}{\lambda}}$.
 - (B) The mean of Y is $\lambda + q(\mu \lambda)$.
 - (C) $\mathbb{E}[Y^2] = 8$ when $\mu = -2$, $\lambda = 2$ and $\sigma = 2$.
 - (D) $\mathbb{E}[Y^2] > 10$ when $\mu = -3$, $\lambda = 2$ and $\sigma = 1$.
 - (E) None of the above is true.

- 17. Continue from Question 16. Which of the following statements is/are true when $q = \frac{1}{2}$?
 - (A) $f_Y(y) = \frac{1}{\sqrt{8\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$ for y < 0.
 - (B) The moment generation function of Y is $M_Y(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$.
 - (C) Var(Y) > 6 when $\mu = 1$, $\lambda = 2$ and $\sigma = 3$.
 - (D) Var(Y) < 2 when $\mu = -1$ and $\lambda = \sigma = 1$.
 - (E) None of the above is true.

共 1 頁 第 1 0 頁

- 18. Let $X_i \in \{0,1\}$ with $i=1,\ldots,N$, be independent and identically distributed Bernoulli random variables with $\mathbb{E}[X_i] = p$, where N is a Poisson random variable, independent of X_i , with mean λ . Let $L = X_1 + \ldots + X_N$ and $M_L(s)$ be the moment generation function of L. Which of the following statements is/are true?
 - (A) $\mathbb{E}[L] = \frac{p}{\lambda}$.
 - (B) $Var(L) = \lambda p$.
 - (C) $M_L(-\ln(2)) = e^{-2\lambda p}$.
 - (D) $M_L(\ln(2)) = e^{\lambda p}$.
 - (E) None of the above is true.

- 19. Which of following statements is/are true?
 - (A) If X is an exponential random variable with mean equal to 1, then $\mathbb{P}(X \ge a) \le \frac{1}{a}$ for all real a > 0.
 - (B) If Y is a real Gaussian random variable with zero mean and unit variance, then $\mathbb{P}(Y^2 + 2Y + 1 \ge a) \le \frac{3}{a}$ for all real a > 0.
 - (C) Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables with $\mathbb{E}[X_i] = 5$ for $i = 1, 2, \ldots$; then $\lim_{n \to \infty} \mathbb{P}(\left|5 \frac{1}{2n} \sum_{i=1}^n X_i\right| \ge 0.01) = 0$.
 - (D) Let $Y_1, Y_2, ...$ be a sequence of independent and identically distributed Poisson random variables with $Var(Y_i) = 4$ for i = 1, 2, ..., and let $\bar{Y}_n = \frac{\sqrt{n}}{2} \left(4 \frac{1}{n} \sum_{i=1}^n Y_i\right)$; then $\lim_{n \to \infty} \mathbb{P}(\bar{Y}_n \le 1) > \frac{1}{2}$.
 - (E) None of the above is true.

台灣聯合大學系統 114 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

共_|| 頁 第_|| 頁

20. Let X and Y be random variables with the following joint PDF

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} rac{1}{\pi r^2}, & ext{if } x^2 + y^2 \leq r^2, \ 0, & ext{if otherwise,} \end{array}
ight.$$

for all $x, y \in \mathbb{R}$ and for some fixed real r > 0. Which of following statements is/are true?

(A)
$$\mathbb{E}[X \mid Y = \frac{r}{2}] = \frac{1}{2}$$
.

(B)
$$\mathbb{E}[Y \mid X = \frac{r}{3}] = 0.$$

- (C) X and Y are statistically dependent.
- (D) X and Y are statistically correlated.
- (E) None of the above is true.