台灣聯合大學系統94學年度學士班轉學生考試命題紙

科目:高等微積分 類組別: D2 共_1_頁第 1_頁 *請在試卷答案卷(卡)內作答

(1) Let $\{a_n\}$ and $\{b_n\}$ be two bounded sequences in \mathbb{R} . If for every a_n there is some $k \geq n$ such that $b_k \geq a_n$, prove that

$$\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n. \tag{10\%}$$

(2) Let X be the metric space of irrational numbers with the metric d(x,y) = |x-y|. Let A be the set of all points x in X with $3 \le x^2 < 9$. Answer the following questions. In all cases, give your proofs.

(a) Is
$$A$$
 closed in X ? (5%)

(b) Is
$$A$$
 open in X ? (5%)

(c) Is
$$A$$
 compact? (5%)

(d) Is
$$A$$
 connected? (5%)

- (3) Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$ be a continuous function on X. Prove that $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$. Here \overline{A} denotes the closure of A. (10%)
- (4) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by setting f(0,0) = 0 and

$$f(x,y) = \frac{y^3}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$.

(a) Do
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ exist at $(0,0)$? Evaluate it when it exists. (5%)

(b) Is
$$f$$
 continuous at $(0,0)$? Justify your answer. (5%)

(c) Is
$$f$$
 differentiable at $(0,0)$? Justify your answer. (10%)

(5) Let $f:[0,1] \to \mathbb{R}$ be such that

$$f(x) = \begin{cases} 0 & \text{if } x = \frac{n-1}{n}, \ n = 1, 2, 3, \dots, \\ 1 & \text{otherwise.} \end{cases}$$

Prove that f is integrable on [0,1] and find the value of $\int_0^1 f(x)dx$. (10%)

- (6) Determine whether the sequence of functions $f_n(x) = \frac{x}{1+nx^2}$, n = 1, 2, 3, ..., converges uniformly on \mathbb{R} as $n \to \infty$. Give your proof. (10%)
- (7) Let $\{a_n\}$ be a bounded sequence in \mathbb{R} . Determine whether the function $f(x) = \sum_{n=1}^{\infty} \frac{a_n}{n!} x^n$ is continuous on \mathbb{R} . Give your proof. (10%)
- (8) Prove that the equation

$$y\cos x = x^2 - e^x\cos y$$

has a solution of the form y = g(x) for (x, y) near (0, 0). Find the first three terms in the Taylor expansion of g(x) about x = 0. (10%)