科	- 目	計算機概論	類組別	A4 701			共 <u>3</u> 頁第 卷、答案卡	l l
	單	選題(答錯不倒扣) ·			个 <u></u> 一	<u>仓、合木</u>	
1	(Convert the binary num	nber (01110.011) ₂	to decimal. What	's the answer of it?	(a)14.621 (b)15.75	4 (c) 14.375 (d) 15.492
2	<u>?</u> . (Convert the octal numb	oer (00110.01) ₈ to	hexadecimal. Wh	at's the answer of it	? (a)48.01 (b)48.0	4 (c) 47.01 (d)	47.04
(7)	3.	Convert the hexadecim	al number (11.1) ₁	ւճ to octal. What's i	the answer of it? (a)	19.21 (b)20.02 (c)	21.24 (d) 21.0	4
۷	1.	If the ASCII code for E i	s 1000101, then t	he ASCII code for e	e is? (a)10001	10 (b) 1000111 (c)	0000110 (d)1	100101
	5.	Retrieve the integer th	at is stored as 101	.00001 in sign-and	-magnitude represe	ntation (a)17 (b)-1	L7 (c)18 (d)-18	
6		Store -28 in an 8-bit mo (d)11100101	emory location us	ing two's complen	nent representation	. (a) 11100100 (b)	11000100 (c)1	0100101
-	7.	Show the number -0.0	00000000000023	2 in scientific nota	tion. (a) 23.2 x 10 ⁻¹⁴	(b) 2.32 x 10 ⁻¹³ (c)	2.32 x 10 ⁻¹⁴ (d)	0.232 x10 ⁻¹⁵
		Show the Excess_127(star) 10000001 011100 (c) 0 10000011 111100	000000000000000000000000000000000000000	000 (b)0 1000000	1 011100000000000	00000000		
		The bit pattern (11001 value of the number is		•				v what the
	10.	In two's complement r	epresentation wit	th a 4-bit allocation	n, we get	_when we add 1 to	o 7. (a)8(b)1(c)	-7(d)-8
	11.	In two's complement r	representation wi	th a 4-bit allocatio	n, we get	_when we add 5 to	o 5. (a)-5(b)-6(c)-7(d)-10
	12.	If the exponent in Exce	ess_127 is binary	10000101, the exp	onent in decimal is	(a)6 (b)7 (c)8 (d)9		
	13.	Two integers A=(1 101 subtracted from A. (a)			ed in sign-and-magi	nitude format. Sho	w the answer	of B being
	14.	Two integers A=(0 001 added to A. (a)38 (b)3		0010110) ₂ are stor	ed in sign-and-mag	nitude format. Sho	ow the answer	of B being
	15.	Two integers A=(0 001 added to A. (a)-6 (b)-7		0010110) ₂ are stor	ed in sign-and-mag	nitude format. Sho	ow the answer	of B being
	16	. Use an arithmetic left (a)78 (b)-78 (c)76 (d)-		n the bit pattern 1	1011001. The patte	rn is an integer in	two's complen	nent format.
	17	. Which is the answer of (c)00110001 (d)01100		10011000 after a c	ircular left shift ope	eration? (a)001100	000 (b)0100110	00
	18	8. Use a mask of flip the (c)11011110 (d)0010		of a pattern. Test	the mask with the p		(a)01011110 (法:背面有註	
1		•				/	公·FI 国门门 部	以及以

多举

台灣聯合大學系統101學年度學士班轉學生考試命題紙

科目	計算機概論	類組別	44 701			共 <u>3</u> 負	弗 <u>乙</u> 貝
					米直	<u>青在試卷、答案</u>	卡內作答
19. Use	the OR operator on th	e bit patterns 10	011001 and 001	.01110. (a) 1	.0011111 (b) 1010)1111 (c)10001001	(d)1011111
20. Use	e the XOR operator on t	he bit patterns 1	0011001 and 00)101110. (a)	10110111 (b) 101	l01111 (c)10001003	l (d)1011111
21. A c	ontrol unit with five wi	es can define up	toop	perators. (a)!	5 (b)10 (c)16 (d)32	<u>2</u>	
22. A v	vord is bits (a)8 (b):	L6 (c)32 (d)any o	f above				
	he memory address spa 8 (b)16 (c)24 (d)32	ace is 16MB and	the word size is	8 bits, then	bits are neede	ed to access each w	ord.
24. Th	ere are bytes in 10	5 Terabytes. (a)2 ²	⁶ (b)2 ⁴⁰ (c)2 ⁴⁴ (d	l)2 ⁵⁶			-
	can be programmed PROM (c)EPROM (d)EE		g electric impuls	ses but can	remain in a compu	uter during erasure.	(a)ROM
26. If t	he memory has 232 wo	ords, the address	bus needs to ha	ave wire	s. (a)8 (b)16 (c)32	(d)64	
27. A d	control bus with eight v	vires can define	operations	s. (a)8 (b)16	(c)256 (d)512		
	e three steps in the run d decode (b) decode, e						etch, execute,
	the method for syready for data transfer.						the CPU when it
	the method for some						can be passed
31. IP	address are currently _	bits in lengt	h (a) 4 (b)8 (c)32	2 (d)any of th	ne above		
32. T h	ne protocol is one	of the protocols	in the transport	layer. (a)TCI	P (b)UDP (c) SCTP	(d)all of the above	
33. Th	ne layer of the TCP/)transport (b)network (IP protocol suite c)data-link (d)se	is responsible fo	or node-to-n	ode delivery of a	frame between two	adjacent nodes
	ne layer of the TCP/)network (d)transport	IP protocol suite	transmits a bit s	stream over	a physical mediur	n. (a)physical (b) da	ıta-link
_	ne layer of the TCP/ hysical	'IP protocol suite	provides service	es for end us	sers. (a) data-link	(b) transport (c)app	lication (d)
36. In	paging, a program is d	ivided into equa	ly sized sections	called	(a)pages (b)fra	mes (c)segments (c	l)partitions
· _						注意:背面有	試題

台灣聯合大學系統101學年度學士班轉學生考試命題紙

	, <u> </u>		<u> </u>	
科目 _	計算機概論	類組別	A4 701	共3頁第3頁 *請在試卷、答案卡內作答
	, the program call)demand segmentation		differently sized sect	tions. (a) partitioning (b)paging (c)demand paging
38. ir	sort, the items (c)insertion (d)all of th		two lists: sorted and ເ	insorted (a)selection (b)bubble
	n sort, the items c)insertion (d)all of the		e sorted list is always	the first item in the unsorted list (a)selection (b)bubble
40. V	Ve use a search	for an unordered	d list. (a)sequential (b)binary (c)bubble (d)insertion
41. V	Ve use a search	for an ordered li	ist. (a)sequential (b)b	inary (c)bubble (d)insertion
	is an ordered colle ecord (c) A linked list (ontains the location of the next element. (a) An array (b)A
	f A is the first data ele a)A (b)B(c)C(d)D	ment input into a	a stack, followed by B	, C, D, then is the first element to be removed.
44. 1	n traversal of a b	inary tree, the ri	ght subtree is process	sed last. (a)preorder (b)inorder (c)postorder (d)a or b
45. F	ind the root of the bi	nary tree with po	storder traversal :FCE	BDG (a)F(b)C(c)B(d)G
	n the hashing m d)digit extraction	ethod, there are	no synonyms or collis	sions. (a)direct (b)modulo division (c)division remainder
47. ⁻	The address produced	by a hashing alg	orithm is the	address (a)probe(b)synonym(c)collision(d)home
48. (f you need to delete a	n attribute in a r	elation, you can use t	the operation. (a)join (b)project (c)union (d)intersection
49.	ln encoding, a st	ring is replaced b	y a pointer to the sto	red string. (a)Huffman (b)run-length (c)LZ(d) all of the above
	In a digital signature in (c)by both the sender			needed (a)only by the recipient (b)only by the sender