國立中央大學八十八學年度轉學生入學試題卷

財務管理學系 三年級 科目:統計學 共 / 頁 第 / 頁

<u>Instructions</u>: Answer the following questions. Make and state your own assumptions for questions where the information is not sufficient for you to solve them. For example, if you need the corresponding p-value of a normally distributed random variable evaluated at 2.5, you may indicate the value as, say, $Pr(x \ge 2.5)$, where $x \sim \mathcal{N}(0, 1)$.

- (50 points) Suppose there are 4 boxes, labeled 1, 2, ..., 4. Five balls, labeled 1, 2, ..., 5, are distributed at random to these boxes (Note: there will be one ball left). Let X_i denote the number of the ball contained in box i. Also, let S_i denote a random variable which equals 1 if the number of the ball contained in the box i is also i, and zero otherwise.
 - (a) (10 poinst) Calculate the mean and variance of X_i.
 - (b) (10 poinst) Calculate the mean and variance of S_i .
 - (c) (10 points) Calculate the correlation of X_i and X_j , i.e., $corr(X_i, X_j)$.
 - (d) (10 points) Calculate the correlation of S_i and S_j , i.e., $corr(S_i, S_j)$.
 - (e) (10 points) Calculate the probability that $S_1 + ... + S_4 = 2$.
- 2. (20 points) Suppose you are testing $H_0: p=1/2$ against $H_1: p=1$ for a binomial variable with n=2. List all critical regions for which the type I error $\alpha \leq 1/2$. Which of these ciritical regions minimizes the sum of type I and type II errors $(\alpha + \beta)$?
- 3. (10 points) Suppose a random variable z is known to have a chi-square (χ^2) distribution with ν degrees of freedom, and w = 2z. Calculate E(w) and Var(w). What do you know about the distribution of w?
- 4. (20 points) Let r_t , t = 1, ..., T, denote an *iid* random variable with a normal distribution whose mean is μ and variance is 1.
 - (a) (10 points) Calculate the mean and variance of the number of r_t 's that are greater than 0. (you may express your answer in terms of normal cdf.)
 - (b) (10 points) Derive a test statistic to test the null hypothesis that the mean μ is zero, i.e., $H_0: \mu = 0$.