博碩士論文 100221003 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator陳玟君zh_TW
DC.creatorWen-Jyun Chenen_US
dc.date.accessioned2013-8-20T07:39:07Z
dc.date.available2013-8-20T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100221003
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在此篇論文中,我們主要探討 2x2 的退化雙曲方程對於黎曼問題的數值計算。此方程源自於愛因斯坦場方程的原型,我們將以一維非線性守恆態去建構簡易的退化雙曲方程,並用數值計算找出近似解。本研究中所使用的數值方法有Godunov’s Method和Euler’s Method,藉由不同的初始值來觀測我們的數值結果發散與否。最後歸納出來的結果及數據都可幫助我們在退化雙曲方程的問題上有更多的了解。zh_TW
dc.description.abstractIn this thesis, we study the numerical computation for the Riemann problem of the 2x2 degenerate hyperbolic system of conservation laws. The equations we consider is an one-dimensional nonlinear balance laws, which can be considered as a warm-up system of shock wave model for the Einstein’s field equations in spherical symmetric space-time. We will give a numerical method, which is called the Godunov method, to construct the approximate solutions for the Riemann problem. By giving several initial conditions for our numerical computation, we observer the consequences of existence or blow-up of solutions for Cauchy problem to the degenerate hyperbolic system.en_US
DC.subject黎曼問題zh_TW
DC.subject愛因斯坦場方程zh_TW
DC.subject退化雙曲方程zh_TW
DC.subject數值計算zh_TW
DC.subjectDegenerate hyperbolic system of Conservation lawsen_US
DC.subjectRiemann problemen_US
DC.subjectGodunov’s methoden_US
DC.subjectEuler’s methoden_US
DC.titleNumerical Computation of Riemann Problem for a Degenerate Hyperbolic System of Conservation Lawsen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明