博碩士論文 100222027 完整後設資料紀錄

DC 欄位 語言
DC.contributor物理學系zh_TW
DC.creator張夫韓zh_TW
DC.creatorFu-han Changen_US
dc.date.accessioned2013-7-8T07:39:07Z
dc.date.available2013-7-8T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100222027
dc.contributor.department物理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本文的重要研究成果是發現隨機布爾網路於臨界相位且k愈大時的網路行為並不如前人所認為會發生混沌的現象,反而是傾向凍住的行為,即k愈大時,吸引子長度及數目分布愈短且愈少,也就是說,在大k且臨界相位時,元素狀態大多分布在流域裡。而且本文數值模擬發現,當10≤N≤350,2≤k≤6且臨界相位情形時(1)有關連元素數目與元素數目N之關係為N_RE∝N^(4/5);穩定核心數目和元素數目N之關係成正比。(2)當N固定350,2≤k≤6時,吸引子長度分布呈現類似Poisson型態,但吸引子數目的分布卻呈現類似power-law型態。 zh_TW
dc.description.abstractThe most important conclusion of our thesis is that we found that Random Boolean networks on critical phase will not have appearance of chaos but it will have appearance of frozen when k is a high number. In other words, the distributions of attractor length and number will be short and few when k is higher. That is to say, when Random Boolean network is on critical phase and k is higher, most of states of elements will distribute in basin. Our numerical simulation finds that the two conclusions will follow the two statements below when Random Boolean network is on critical phase and 10≤N≤350,2≤k≤6. (1) The relation which is between relevant elements,“N_RE”, and the number of elements,“N”,is N_RE∝N^(4/5).Stable cores and the number of elements,“N”, are in direct proportion. (2) When we have 2≤k≤6 for N=350, the distribution of attractor length will be similar to Poisson distribution, but attractor numbers will be similar to power-law distribution.en_US
DC.subject考夫曼隨機布爾網路zh_TW
DC.subject布爾更新函數zh_TW
DC.subject吸引子(循環)長度zh_TW
DC.subject吸引子(循環)數目zh_TW
DC.subject穩定元素zh_TW
DC.subject穩定核心zh_TW
DC.subject有關連元素zh_TW
DC.subject不穩定元素zh_TW
DC.subject流域zh_TW
DC.title隨機布耳網路在多連線且臨界情形下的特性zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明