博碩士論文 100225010 完整後設資料紀錄

DC 欄位 語言
DC.contributor統計研究所zh_TW
DC.creator許致榕zh_TW
DC.creatorChih-Jung Hsuen_US
dc.date.accessioned2013-7-2T07:39:07Z
dc.date.available2013-7-2T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100225010
dc.contributor.department統計研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract風險價值(VaR)不只廣泛應用在投資組合的風險測量上,也成為風險管理的重要基準;條件風險值(ES)也是風險測度指標而且包含更多關於分布尾端的資訊。因此,VaR和ES的評估精確度受到越來越多的關注。在此篇論文,我們使用一個對稱的GARCH(1,1)模型。然後,我們採用一個方法-importance sampling technique,來減少變異數且精確地估計VaR與ES。此外,importance sampling technique可以得到與其他的方法一樣的精確度但卻使用較少的樣本。在最後,我們展示我們的方法importance sampling technique優於其他方法。zh_TW
dc.description.abstractValue-at-risk (VaR) is not only broadly used in portfolio risk measurement but also becomes an important benchmark in risk-management. Moreover, expected shortfall (ES) is a risk measure and has more information about the distribution of returns in the tail. Thus, evaluating precision of VaR and ES is getting more attention. In this paper, we suggest a symmetric GARCH(1,1) model to fit the loss data. Then, we propose an importance sampling technique to reduce the variance and estimate VaR and ES accurately. Besides, we find the method with importance sampling which can get the same precision like other methods but using less sample sizes. In the end, we show the method with importance sampling technique outperforms other methods.en_US
DC.subject風險價值zh_TW
DC.subject條件風險值zh_TW
DC.subject厚尾zh_TW
DC.subjectGARCH模型zh_TW
DC.subjectValue-at-risken_US
DC.subjectExpected shortfallen_US
DC.subjectHeavy taileden_US
DC.subjectGARCH modelen_US
DC.titleImportance sampling for VaR and ES calculations under GARCH modelen_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明