博碩士論文 100322003 完整後設資料紀錄

DC 欄位 語言
DC.contributor土木工程學系zh_TW
DC.creator莊明峰zh_TW
DC.creatorMin-fung Chuangen_US
dc.date.accessioned2013-7-24T07:39:07Z
dc.date.available2013-7-24T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100322003
dc.contributor.department土木工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract現今,鋼橋為設計重要橋梁的主要選擇之一。而由於橋面上鋼床鈑鋪面結構與一般道路鋪面不同,因此本研究使用有限元素分析軟體ABAQUS建立鋼床鈑鋪面三維有限元素模型,以此模擬不同的車輪軸型、車輪載重位置及鋪面材料配置等情形下之力學反應,並求取鋪面上產生的最大主張應變(MPE-T)與垂直壓應變(E33-C)來進行鋼床鈑鋪面破壞之相關分析。 研究結果顯示,對於鋼床鈑鋪面來說:(1)較佳雙層鋪面材料配置原則為將回模模數較小的鋪面材料置於面層,而較大的置於底層,藉此控制面層先產生破壞,以利維修。(2)鋪面層上MPE-T最大值受車輪載重與肋梁之相對位置影響大,而受車輪載重與橫梁之相對位置影響小;而其E33-C最大值受車輪載重、肋梁與橫梁三者間之相對位置影響。(3)當車輪載重質心在肋梁側版上方時,鋪面上產生的MPE-T最大值較其餘位置時大,其值位於胎印兩側的面層底部,可視為疲勞破壞最可能先發生位置。(4)鋪面層上E33-C分布情況受到鋪面材料配置以及整體結構對車輪載重之分配的影響而不同,如較佳雙層鋪面材料配置會集中於面層、雙輪下可能分布不均。(5)軸型不同對於不同載重位置作用下,鋪面層上MPE-T與E33-C之最大值的數值差異趨勢沒有影響,而數值大小上存在些許差值,表示雙軸雙輪之前後軸對於鋪面層上MPE-T與E33-C之最大值有互相影響,但是並不顯著。zh_TW
dc.description.abstractNowadays, the steel bridge is one of the choices for designing. Because the structure of steel deck pavement on the steel bridge is different with the general road pavement, this study used the three-dimensional finite element model of steel deck pavement to model the mechanical responses of steel deck pavement under different conditions of loading types, load positions, and pavement material combinations, and then found the maximum value of maximum principle tensile strain (MPE-T) and vertical compressive strain (E33-C) in the pavement to do the steel deck pavement damage analysis. The results for steel deck pavement show that, for easy to maintenance, the better pavement material combination is the pavement material with greater stiffness being placed in the bottom, and lower one placed in the top to control the pavement whose surface course occurs damage first. The maximum value of MPE-T in the pavement is influenced by relative positions of loads, ribs, and floor beams. When the center of loading moves along the top of ribs, the maximum values of MPE-T in the pavement are more than the others. These values are located on the bottom of surface course and below the two sides of tires, where can be regarded as the locations where fatigue cracking occurs. The distribution of E33-C is influenced by pavement design and wheel load istribution. For example, E33-C concentrates on surface course for the better pavement material combination, and distributes unevenly for some special conditions. The front and rear axles of dual-tandem wheels do not influence with each other for the change tendency of MPE-T and E33-C in the pavement, but still cause small differences for the maximum values of them.en_US
DC.subject鋼床鈑鋪面zh_TW
DC.subject有限元素法zh_TW
DC.subject疲勞破壞zh_TW
DC.subject車轍破壞zh_TW
DC.subjectsteel deck pavementen_US
DC.subjectfinite element methoden_US
DC.subjectfatigue crackingen_US
DC.subjectruttingen_US
DC.title鋼床鈑鋪面三維有限元素模型之破壞分析zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明