dc.description.abstract | Polymethylmethacrylate (PMMA), also called acrylic glass, is transparent, chemically stable, thermoplastic and inexpensive, making it suitable for many biochemical applications. Among different fabrication processes of PMMA such as gelation, injection and casting, plasma polymerization is the one capable of depositing nano scale films on almost any substrate uniformly and rapidly. In this study, we investigated the structure, composition, surface and mechanical properties of deposited PMMA films on glass by RF power plasma inside a vacuum chamber. The deposition was carried out under different RF power, working pressure and deposition time, from which an optimal fabrication condition was explored. On the characterization part, following tests were carefully conducted: the thickness (around 50 to 200nm) was estimated by surface profiler; microstructures was determined by Fourier transform infrared spectroscopy (FT-IR); surface chemical compositions were examined by X-ray photoelectron spectroscopy (XPS);surface morphology and roughness were measured by atomic force microscopy (AFM) and the wettability by water contact angle. Primary results showed that deposited films are physically and chemically stable for more than a week, which are readily available for hepatocytes cell culture, cell proliferation, cell activity and function execution test. | en_US |