dc.description.abstract | The technology of moving granular bed filter for high temperature dust removal was studied successfully by using flow corrective element to solve the stagnant zone problems and establishment of cold filtration performance database. In subsystems of granular bed filter (such as gas and dust supply systems, gas inlet system, filter media/dust trommel screening system and filter media recycling system) also have developed successfully. But in terms of future commercial system, dust collection system is still currently slightly inadequate. But in terms of commercialization system remains somewhat inadequate. The thesis will develop a continuous integration system and long time filtration operations based on a previous granular bed filter and subsystems. The results can give some information for establishment of hot gas system in the future.
First of all, the vortex of gas flow distribution was decreased for improved design of gas inlet system by using numerical simulation of ANSYS FLUENT. The simulation results indicate that improving the design of gas inlet system will allow dust particles to smooth into granular bed.
Secondly, the settlement behavior of dust particles was studied according the before and after improvement design of gas inlet system. Settlement of dust particles will cause deposits in the pipeline clogging. For consideration of a continuous integration system, will affect filtration performance and continuity of the operation for a long time, downtime maintenance problems. The different dust particle sizes were studied with deposition phenomenon of dust particle in the system. The experimental results showed that dust deposition effects occurring more than 100 μm in diameter. In addition, granular bed change into moving bed, the bed porosity is larger causing the attracting characteristics of dust particles. It can reduce settling problem the amount of dust particles.
Thirdly, the airtight system was designed according to filter media/dust trommel screening system. The dual purposes of dust collection and discharge were obtained after screening procedure. The continuous flow property of filter medium was studied in order to provide the designing information of filter media recycling system.
Fourthly, the filter media recycling system was designed according to the results of flow property of filter medium. For the filter media recycling system, the repeated filtration process was obtained by filter media recycling back to granular bed. According to the thesis results, the preliminary dynamic integrated dust removal system will be test by continuous filtration operation.
Finally, the filtration performance of measurement and control online system will be proposed and to reach the targets of a continuous integration system and longtime filtration operations form the above research results. The results could be provided information of commercialization system in the future. | en_US |