博碩士論文 100329003 完整後設資料紀錄

DC 欄位 語言
DC.contributor材料科學與工程研究所zh_TW
DC.creator江建儒zh_TW
DC.creatorJian-Ru Jiangen_US
dc.date.accessioned2013-6-27T07:39:07Z
dc.date.available2013-6-27T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100329003
dc.contributor.department材料科學與工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract由於奈米結構具有非常大之比表面積,因此其表面結構在奈米材料的應用中扮演著相當重要的角色。本研究利用金屬錯合反應(Metal complexation reaction)成功以化學溶液法合成出兩種不同的硫化亞銅(Cu2S)奈米結構,並探討硫化亞銅於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)以及光催化降解(Photodegradation)之應用。為了增加硫化亞銅之SERS性質以及光催化降解效率,本研究利用硫化亞銅片狀奈米結構具有大表面積之性質控制銀奈米粒子沉積於表面特定位置,根據掃描式電子顯微鏡影像 (Scanning Electron Microscopy, SEM) 可發現銀奈米粒子優先選擇沉積在硫化亞銅片狀結構之邊界。此銀奈米粒子排列可有效增強其表面電漿場以及SERS強度。同時,銀金屬粒子硫化亞銅半導體複合結構可促進電子電洞分離增加其光催化降解之效率。 論文第二部分探討硫化亞銅奈米線陣列其場發性質及光催化降解之應用。利用生物分子胱胺酸(Cystine)結合金屬錯合反應可成功透過生物分子輔助化學溶液法在銅基板上製備出一維硫化亞銅奈米線陣列,其中胱胺酸不僅可當作表面形貌導引分子,促成奈米結構成長,其中所含之硫氫基更可做為硫的來源,以一種環保且低成本的方式合成硫化物奈米結構。硫化亞銅奈米線擁有良好的場發性質,根據實驗結果,硫化亞銅奈米線具有低開路電場(1.19 V/μm) 以及高場發射增強因子(β=19381)。由於光催化反應發生於材料表面,因此表面積對於光催化降解之效率有顯著的影響,相較於片狀奈米結構,奈米線結構具有較大之表面積其光降解效率亦優於奈米片結構。zh_TW
dc.description.abstractThe surface characteristics of nanostructures play a critical role in the applications. In this thesis, two Cu2S nanostructures synthesized via a general solution route are applied in surface enhanced Raman scattering (SERS) and photocatalytic degradation. In the first part of this thesis, we demonstrate a facile, rapid, and practical approach to fabricate a flowerlike Cu2S substrate and then decorated Ag nanoparticles with a convenient galvanic reduction method. The scanning electron microscopy (SEM) images indicate that Ag nanoparticles are preferential deposited on the edge of Cu2S sheets due to the localization of the electrons on the surface of Cu2S. Owing to the introduction of Ag nanoparticles on the surface of Cu2S structures, the resulting Ag-Cu2S composite structures could be used as a versatile substrate for surface enhanced Raman scattering. In addition, Ag nanoparticles on the semiconductor surface behave like electron sinks, which can provide sites for accumulation of the photogenerated electrons, and then facilitate the separation of electrons and holes. Hence, adding Ag nanoparticles is a promising method to enhance the photocatalytic performance of Cu2S nanosheets. It is significant that photocatalysts fabricated by Cu2S nanosheets can be applied to the degradation of organic pollution, and solves the environmental issues.   In the second part, the Cu2S nanowires grow directly onto copper substrate by utilizing the biomolecule-assisted approach. Besides the reductive properties of biomolecules, they also have strong shape or size directing functionality in the reaction process. The field-emission properties of the Cu2S nanowires are studied by the Folwer-Nordheim (F-N) theory. The Cu2S nanowires show low turn-on field (1.19 V/μm) and high field enhancement factor (β=19381). The photocatalytic activity of two kinds of Cu2S structures was investigated by degradation of rhodamine B (RhB) under UV illumination. The experimental results indicate that surface area play a significant role on the efficiency of photocatalysis since photocatalytic reaction occurred on the surface.en_US
DC.subject表面增強拉曼散射zh_TW
DC.subject光催化降解zh_TW
DC.subjectzh_TW
DC.subject硫化亞銅zh_TW
DC.subjectSERSen_US
DC.subjectphotogegradationen_US
DC.subjectAgen_US
DC.subjectCu2Sen_US
DC.title銀修飾硫化亞銅基板應用於表面增強拉曼散射與光催化降解之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleStudy on Surface Enhanced Raman Scattering and Photocatalytic Properties of Ag-decorated Cu2S Composite Nanostructuresen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明