博碩士論文 100521076 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator高志杰zh_TW
DC.creatorChih-Chieh Kaoen_US
dc.date.accessioned2013-7-10T07:39:07Z
dc.date.available2013-7-10T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=100521076
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文主要針對特徵值擷取方法梅爾倒頻譜係數MFCC 中的梅爾濾波器組做研究。 在基於粒子群演算法最佳化濾波器組的中心頻率與邊界頻率上,提出不同於一般使用辨識率當適應函數的方法,而是以統計曲線與濾波器組包絡線的相似度做為適應函數進行最佳化,而本論文依照語音訊號在能量頻譜上的特性,以能量統計圖及能量差異性統計圖為依據,得到兩組最佳化的結果,並分別進行關鍵詞辨識和三種常見雜訊環境下的測試。 最後的實驗結果顯示,此方法有提升特徵值擷取效果的能力,提高了關鍵詞萃取系統的辨識率,且在強健性上亦含有特定環境的抗雜訊能力。zh_TW
dc.description.abstractIn this thesis, a study for feature extraction using filter bank applied to mel frequency cepstrum coefficients (MFCC) is presented. We propose a novel approach to use particle swarm optimization (PSO) to optimize the parameters of MFCC filterbank, such as the central and side frequencies. The proposed PSO algorithm utilizes filter similarity between statistical curve and filterbank’s envelope as fitness function. According to the energy and energy difference statistical charts that comply with characteristics of the speech signal in the energy spectrum, we obtained two optimal results by PSO. Then keyword recognization and three noisy environments are considered for tests. The results of our experiments show that the proposed method improves the recognition rate of keyword spotting system and the robustness against the testing noisy environments.en_US
DC.subject梅爾濾波器組zh_TW
DC.subject粒子群演算法zh_TW
DC.subject梅爾倒頻譜系數zh_TW
DC.subject關鍵詞萃取zh_TW
DC.subjectMel- Filterbanken_US
DC.subjectPSOen_US
DC.subjectMFCCen_US
DC.subjectkeyword spottingen_US
DC.title粒子群演算法應用於梅爾濾波器組之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titlePSO Algorithm for Mel- Filterbanken_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明